首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Links between forest floor carbon:nitrogen (C:N) ratios, atmospheric N deposition and nitrate leaching into surface waters have been reported for forest ecosystems, but similar studies have not been reported previously for the equivalent compartments of moorland ecosystems in Great Britain, despite the importance of nitrate in contributing to the acidification of moorland streams and lakes in British uplands. In this paper, the relationships between the C:N ratio of moorland soil surface organic matter, N deposition, and nitrate leaching are explored for 13 soils in four moorland catchments. Although there is spatial variability in the C:N ratio of soils, major differences are apparent between soils and especially between catchments. The C:N ratio appears to be inversely related to modelled inorganic N deposition and, to a lesser degree, measured nitrate leaching, for three of the four catchments studied (Allt a'Mharcaidh, Afon Gwy, and Scoat Tarn). Nitrification may make an important contribution to nitrate leaching at the two higher deposition sites. At the fourth site, the heavily acidified River Etherow catchment, extremely high rates of nitrate leaching are not accompanied by low C:N ratios or high nitrification potentials in the upper soil horizons. Hence the C:N ratio of surface soil organic matter may have potential as an indicator of nitrogen saturation and leaching in some systems, but it is not universally applicable.  相似文献   

2.
As part of the Abatement Strategies for Transboundary Air Pollution (ASTA) research program, the dynamic soil chemistry model SAFE was used to make hindcasts and future projections of soil solution chemistry for 645 Swedish forest soils between 1800 and 2100. The data needed were derived from different databases of different spatial resolution ranging from site-specific measurements of soil and stand characteristics from the Swedish Forest Inventory to species-specific nutrient content ranges based on literature surveys. The time-series of nutrient uptake and atmospheric deposition needed were created using the MAKEDEP model and the future scenarios were based on the 1999 Gothenburg protocol. The version of MAKEDEP used included nutrient content elasticity, and the modelled biomass nutrient content thus varies between regions as well as over time. The results were analysed by dividing the sites into three different regions (southwest, central and north) as well as nationally. It was shown that acidification remains a severe environmental problem in the southwest region even after implementation of the 1999 Gothenburg protocol, whereas in the north the problem is far less pronounced.  相似文献   

3.
Stuchlík  E.  Appleby  P.  Bitušík  P.  Curtis  C.  Fott  J.  Kopáček  J.  Pražáková  M.  Rose  N.  Strunecký  O.  Wright  R. F. 《Water, Air, & Soil Pollution: Focus》2002,2(2):127-138
Starolesnianske pleso is a small and shallow acid lake in the High Tatra Mountains, situated at 2000 m above sea level, on granitic bedrock, with sparse and thin soil cover. When detailed measurements began in the 1980s Starolesnianske pleso had pH below 5 and only one species of cladoceran zooplankton, the ubiquitous Chydorus sphaericusPalaeolimnological investigations show changes in cladoceran zooplankton and chironomid zoobenthic assemblages since about 1920 and a major change in 1970–1980. The dynamic acidification model MAGIC was used to reconstruct changes in water chemistry over the past 150 years. The results from MAGIC agree well with the sediment record; pH levels gradually decreased from 6.5 in the mid-1800s to about 5.6 in 1920 (first response in biota) to below 5.0 by 1970, and concentrations of inorganic aluminium rose dramatically beginning about 1960. In the 1990s the lake water chemistry showed clear signs of reversal in acidification brought about by a major decline in S deposition.  相似文献   

4.
The recovery from acidification has led to the demand for more precise criteria for classification of acidification. The Swedish Environmental Protection Agency has revised Sweden’s Ecological Quality Criteria for acidification to improve the correlation between the chemical acidification criteria and biological effects. This paper summarises the most relevant findings from several of the studies commissioned for this revision. The studies included data on water chemistry in 74 reference lakes in southern Sweden with data on fish in 61 of the lakes, as well as data on littoral fauna in 48 lakes. We found that the acidity variable most strongly correlated to the biota was the median pH from the current year. Our results probably do not reflect the mechanisms behind the negative effects of acidity on the biota, but are fully relevant for evaluation of monitoring data. The biogeochemical models used for predicting acidification reference conditions generate a pre-industrial buffering capacity. In order to get an ecologically more relevant criteria for acidification based on pH, we transferred the estimated change in buffering capacity into a corresponding change in pH. A change of 0.4 units was defined as the threshold for acidification. With this criterion a considerably lower number of Swedish lakes were classified as acidified when compared with the present Ecological Quality Criteria.  相似文献   

5.
Since 1983, the Ministry of the Environment of Japan has conducted nation-wide acid deposition surveys. To investigate the effects of acid deposition on surface water, we used the nonparametric Mann–Kendall test to find temporal trends in pH, alkalinity, and electrical conductivity (EC) in more than 10 years of data collected from five lakes and their catchments (Lake Kuttara: northernmost; Lake Kamakita: near Tokyo; Lake Ijira: central; Lake Banryu: western; and Lake Unagiike: southernmost). The pH of Lake Ijira water has declined slightly since the mid-1990s, corresponding with the downward trends seen in the pH and alkalinity of the river water flowing into the lake. There were significant upward trends in the EC of both the lake and stream water; the same trends were also found for concentrations. These trends show evidence of acidification due to atmospheric deposition, and this is the first such finding in Japan based on significant long-term trends. Lake Ijira is located about 40 km north of the Chukyo industrial area near Nagoya. The annual depositions of H+, nss-, and in Lake Ijira were among the highest of all deposition monitoring sites, suggesting that this is the main cause of the significant acidification observed in Lake Ijira. No significant trends suggesting acidification were observed in any of the other lake catchments in spite of the significant upward trends in EC. Upward trends in pH and alkalinity at Lake Banryu and upward trends in alkalinity at Lake Kamakita were detected, but no change in pH or alkalinity at Lake Kuttara and Lake Unagiike was observed.  相似文献   

6.
Trends in the Water Chemistry of High Altitude Lakes in Europe   总被引:2,自引:0,他引:2  
Mosello  R.  Lami  A.  Marchetto  A.  Rogora  M.  Wathne  B.  Lien  L.  Catalan  J.  Camarero  L.  Ventura  M.  Psenner  R.  Koinig  K.  Thies  H.  Sommaruga-Wögrath  S.  Nickus  U.  Tait  D.  Thaler  B.  Barbieri  A.  Harriman  R. 《Water, Air, & Soil Pollution: Focus》2002,2(2):75-89
Here we present the chemical trends of seven high altitude lakes, analysed within the AL:PE and MOLAR Projects of the EU (1999) and selected on the basis of the availability of complete and reliable data for the period 1984–1999. The lakes are representative of the Scandinavian Alps, the Cairngorm Mountains in Scotland, the Alps and the Pyrenees. Significant trends were identified for some indicators of acidification, for instance pH and alkalinity, but not all lakes reacted similarly to decreasing depositions of sulphate and base cations. Differences in lake response are discussed in relation to recent variations of atmospheric deposition chemistry and associated changes in climatic conditions. Beside individual variations of the studied lakes, depending, among other things, on altitude and morphology, catchment characteristics and climate trends play a major role for the reaction of high altitude lakes on changes in atmospheric depositions.  相似文献   

7.
One of the principal influences on elemental fluxes from forestedcatchments in south-central Ontario is the atmospheric deposition rate of strong acids. While sulphate deposition has decreased by ~40% in the past two decades, nitrate deposition has remained unchanged and is now equivalent to sulphate deposition. Sulphate concentrations in headwater lakes and their inflows have decreased, but much less than expected based on the anticipated direct response of the catchments. Reduction-oxidation (redox) processes occurring in wetlands have been identified as the reasonfor delayed recovery, and climate events as controlling these redoxprocesses. A new version of the biogeochemical model MAGIC (modelof acidification of groundwater in catchments) with a wetland compartment that incorporates redox processes driven by climate events has been generated. The application of MAGIC to a subcatchmentof Plastic Lake in south-central Ontario indicates that the basic structure of the model appears to be consistent with the observeddata. Moreover, the wetland component was essential in reproducingthe observed trends, which include sulphate retention in non-droughtyears and re-oxidation of previously stored (reduced) sulphur in drought years.  相似文献   

8.
Reduced emissions of acidifying pollutants have changed the acidification process, and as a result, forest soils and surface waters are slowly recovering in Sweden. However, model calculations show that some areas may never recover completely unless further measures, such as liming, are undertaken. Liming of surface waters (lakes, rivers and wetlands) has been successfully practised in Sweden since the 1970s, but repeated treatments are necessary. A full recovery of acidified lakes and streams without frequent liming is however not possible until soil acidification is reversed in the most strongly affected areas. In this study, the recovery of acidified streams was examined using ‘the total catchment approach’ i.e. treatment of both recharge and discharge areas. The aim was to compare the quantitative effect of different treatments on run off chemistry and the recovery of brown trout. Catchments in southwest Sweden were treated with a combination of 2 tons of wood ash and 4, 6 or 12 tons of crushed limestone per hectare in 1998/1999. Treatment of both recharge and discharge areas resulted in fast and significant changes in stream water quality, e.g. increased concentrations of calcium, higher pH and ANC and a decreased concentration of inorganic aluminium. The initial changes were dependent on the distribution of the applied lime between discharge and recharge areas rather than the average dose on the total catchment. Treatment of recharge areas only, resulted in smaller but still significant effects on calcium, pH and ANC in stream water. Furthermore, there was an initial leaching of nitrate but it was only minor compared with the elevated leaching that occurs after a clear-cut. As a result of the treatments, brown trout is now successfully reproducing. Olle Westling (deceased).  相似文献   

9.
Much of the biogeochemical cycling research in catchments in the past 25 years has been driven by acid deposition research funding. This research has focused on vulnerable base-poor systems; catchments on alkaline lithologies have received little attention. In regions of high acid loadings, however, even well-buffered catchments are susceptible to forest decline and episodes of low alkalinity in streamwater. As part of a collaboration between the Czech and U.S. Geological Surveys, we compared biogeochemical patterns in two well-studied, well-buffered catchments: Pluhuv Bor in the western Czech Republic, which has received high loading of atmospheric acidity, and Sleepers River Research Watershed in Vermont, U.S.A., where acid loading has been considerably less. Despite differences in lithology, wetness, forest type, and glacial history, the catchments displayed similar patterns of solute concentrations and flow. At both catchments, base cation and alkalinity diluted with increasing flow, whereas nitrate and dissolved organic carbon increased with increasing flow. Sulfate diluted with increasing flow at Sleepers River, while at Pluhuv Bor the sulfate-flow relation shifted from positive to negative as atmospheric sulfur (S) loadings decreased and soil S pools were depleted during the 1990s. At high flow, alkalinity decreased to near 100 μeq L-1 at Pluhuv Bor compared to 400 μeq L-1 at Sleepers River. Despite the large amounts of S flushed from Pluhuv Bor soils, these alkalinity declines were caused solely by dilution, which was greater at Pluhuv Bor relative to Sleepers River due to greater contributions from shallow flow paths at high flow. Although the historical high S loading at Pluhuv Bor has caused soil acidification and possible forest damage, it has had little effect on the acid/base status of streamwater in this well-buffered catchment.  相似文献   

10.
Reduction of sulphur deposition causesrecovery of acidified surface waters. Processes in thecatchment delay recovery. The acidification model MAGICwas applied to the Vikedal and Tovdal rivers in southernNorway. Response in water chemsitry is delayed by 10–20 yr. The delay is due to release of old sulphate atVikedal and cation exchange at Tovdal. Assuming that theGothenburg protocol is fully implemented by the year2010, much of the predicted increase of ANC will occur inthe next 10 yr with a levelling off by about 2040. Ifnitrogen leaching increases in the future, however,recovery of ANC will not be as rapid, nor as complete.Critical load for acidity calculated by steady-statemodels is confirmed by the MAGIC predictions. Futurerequirement for mitigation measures such as liming willdecrease in the future as acid deposition decreases. Bythe year 2046 the liming requirement will be reduced byabout 45% at Vikedal and 65% at Tovdal. One of the mainpurposes of the Norwegian national monitoring programmeis to provide documentation of changes in environmentalquality due to long-range transported air pollutants.Modelling applications such as this clearly show that thedata fill this purpose.  相似文献   

11.
This study is based on a Finnish lake survey conducted in 1995, a dataset of 874 statistically selected lakes from the national lake register. The dataset was divided into subgroups to evaluate lake water-catchment relationships in different geographical regions and in lakes of different size. In the three southernmost regions, the coefficients of determination in multiple regression equations varied between 0.40 and 0.53 for total nitrogen (TN) and between 0.37 and 0.53 for total phosphorus (TP); the best interpreters were agricultural land and water area in the catchment. In the two northernmost regions, TN concentrations in lake water were best predicted by the proportion of peatlands in the catchment, the catchment slope, and TP concentrations by lake elevation and latitude. Coefficients of determination in multiple regression equations in these northern regions varied between 0.39 and 0.67 for TN and between 0.41 and 0.52 for TP. For all the subsets formed, the best coefficients of determination explaining TN, TP, and total organic carbon (TOC) were obtained for a subset of large lakes (>10 km2), in which 72–83% of the variation was explained. This was probably due to large heterogeneous catchments of these lakes.  相似文献   

12.
Curtis  C. J.  Barbieri  A.  Camarero  L.  Gabathuler  M.  Galas  J.  Hanselmann  K.  Kopaček  J.  Mosello  R.  Nickus  U.  Rose  N.  Stuchlik  E.  Thies  H.  Ventura  M.  Wright  R. 《Water, Air, & Soil Pollution: Focus》2002,2(2):115-126
Critical load models for acidityprovide a measure of the sensitivity of surfacewaters to acid deposition, and can be used todetermine critical load exceedance and potentiallong-term harmful effects. Three static models,the Steady-State Water Chemistry model, diatommodel and First-order Acidity Balance model, arehere applied to 11 high mountain lakes in Norway,Scotland, the Alps, the Pyrenees and the Tatras.Between five and seven of the lakes show criticalload exceedance, depending on the model used.Nitrogen as well as sulphur deposition isimportant in causing exceedance. Since soil andvegetation cover are generally sparse, geologyand lake retention time appear to be key factorsin the determination of critical load. Retentionof nitrogen is observed, but it is unclearwhether this occurs within the lake or theterrestrial part of the catchment.  相似文献   

13.
Trends have been analysed for 12 years ofchemical data from six mountain lakes in the UK AcidWaters Monitoring Network (AWMN). With minimal localanthropogenic impacts, these sites offer the bestavailable opportunity for clear identification of surfacewater chemical response to external factors, whethernatural or anthropogenic. Results indicate that naturalclimatic variations have had a major impact on lakechemistry, through fluctuations in (i) intensity ofstorms, which cause dilution of weathering-derived basecations, and/or displacement of hydrogen and aluminiumions on soil exchange sites by deposited marine basecations; and (ii) winter temperature, which is thought tobe inversely related to spring nitrate (NO3) maxima.Both climatic factors can be linked to the North AtlanticOscillation. For the first decade of AWMN monitoringthese natural `confounding factors' to a significantextent obscured any recovery from acidification due todeclining anthropogenic sulphur deposition. However, theadditional data presented here provide strengtheningevidence for chemical recovery at a number of sites, atwhich decreases in sulphate (SO4), acidity andlabile aluminium can now be identified. It is believedthat changes at these sensitive mountain lake sites mayherald more widespread recovery in UK surface waters aspollutant emissions decline further. However, largeincreases in dissolved organic carbon, and hence inorganic acidity, may have partially offset reductions inmineral acidity. The cause of these increases remainsuncertain, but may be linked to climatic change.  相似文献   

14.
To evaluate the acid deposition reduction negotiated for 2010 within the UNECE LRTAP Gothenburg Protocol, sulphur and nitrogen deposition time-series (1880–2100) were compared to critical loads of acidity on five French ecosystems: Massif Central basalt (site 1) and granite (2); Paris Bassin tertiary sands (3); Vosges mountains sandstone (4) and Landes eolian sands (5). The SAFE model was used to estimate the response of soil solution pH and ratio to the deposition scenario. Among the five sites, critical loads were exceeded in the past at sites 3, 4 and 5. Sites 3 and 4 were still expected to exceed in 2010, the Protocol year. Further reduction of atmospheric deposition, mainly nitrogen, would be needed to achieve recovery on these ecosystems. At sites 3, 4 and 5, the delay between the critical load exceedance and the violation of the critical chemical criterion was estimated to be 10 to 30 years in the top soil and 50 to 90 years in the deeper soil. At site 5, a recovery was expected in the top soil in 2010 with a time lag of 10 years. Unexpectedly, soil pH continued to decrease after 1980 in the deeper soil at sites 2 and 5. This time lag indicated that acidification moved down the soil profile as a consequence of slow base cation depletion by ion exchange. This delayed response of the soil solution was the result of the combination of weathering rates and vegetation uptake but also of the relative ratio between base cation deposition and acid compounds.  相似文献   

15.
The Cairngorms in north-east Scotland is remote from pollutant sources although it currently receives ca. 10 kg ha1 yr1 S and ca. 11 kg ha1 yr1 N deposition from the atmosphere.In 1955, 15 lochs (lakes) at a range of altitudes were sampled and analysed for major ion concentrations. A new survey of these and an additional 23 lochs and their catchment soils was conducted in 1999 to determine the impact of acid deposition, and the changes in loch chemistry since the 1955 survey. The bedrock geology of this region has a strong influence on the loch chemistry. Surface waters were generally more acidic in high altitude areas due to predominantly poorly buffered, thin alpine soils developed on granitic parent material (mean acid neutralising capacity (ANC) for 23 lochs = 30 eq L1). At lower altitudes where the geology is dominated by Dalradian metamorphic rocks surface waters are comparatively base rich and have higher ANC (mean ANC for 15 lochs = 157 eq L1). Surface water nitrate concentrations show a negative relationship with soil C:N status, in that higher nitrate only occurs at low soil C:N ratios. A comparison of data for 1955 and 1999 shows that sulphate concentrations are significantly lower (67.8 and 47.5 eq L1, respectively), and pH has improved (pH 5.6 and 5.9) in response to decreased S deposition since the mid 1970s. However, mean nitrate concentrations were found to increase from 2.48 >eq L1 in 1955 to 5.65 eq L1 in 1999. Differences in the sampling and laboratory methods from 1955 and 1999 are acknowledged in the interpretation of data.  相似文献   

16.
Measurements of the cosmogenically-produced 35S, a radioisotope of sulphur (t1/2 = 87 days), are reported for the Ned Wilson Lake watershed in Colorado. The watershed contains two small lakes and a flowing spring presumed to be representative of local ground water. The watershed is located in the Flattops Wilderness Area and the waters in the system have low alkalinity, making them sensitive to increases in acid and sulphate deposition. Time series of 35S measurements were made during the summers of 1995 and 1996 (July–September) at all three sites. The system is dominated by melting snow and an initial concentration of 16–20 mBq L-1 was estimated for snowmelt based on a series of snow samples collected in the Rocky Mountains. The two lakes had large initial 35S concentrations in July, indicating that a large fraction of the lake water and sulphate was introduced by meltwater from that year's snowpack. In 1995 and 1996, 35S concentrations decreased more rapidly than could be accounted for by decay, indicating that other processes were affecting 35S concentrations. The most likely explanation is that exchange with sediments or the biota was removing 35S from the lake and replacing it with older sulphate devoid of 35S. In September of 1995 and 1996, 35S concentrations increased, suggesting that atmospheric deposition is important in the sulphate flux of these lakes in late summer. Sulphur-35 concentrations in the spring water were highly variable but never higher than 3.6 mBq L-1 and averaged 2 mBq L-1. Using a simple mixing model, it was estimated that 75% of the spring water was derived from precipitation of previous years.  相似文献   

17.
Two models, N_EXRET and INCA, were applied to the Simojoki river basin (3160 km2) in northern Finland in order to assess nitrogen retention in wetlands and lakes. N_EXRET is a spatial, export coefficient-based N export and retention model developed for large river basins. It utilizes remote sensing-based land use and forest classification, evaluated export coefficients, and data on areal N deposition and point sources of N. A new version (v1.7) of the Integrated Nitrogen in CAtchments model (INCA) is a semi-distributed, dynamic nitrogen process model, which simulates and predicts nitrogen transport and processes within catchments. Average retention of the gross total N load of 700 t a-1 to the river system was estimated using N_EXRET model as 17 t N a-1 to the wetlands and 77 t N a-1 to the lakes. A good fit was found between modeled and measured values along the river. Inorganic N fluxes simulated by the INCA model were compared with measured fluxes along the river Simojoki, with a good fit between modeled and measured NH4 +-N fluxes, and an adequate fit for NO3 --N fluxes. Both fluxes were overestimated at the first reach, below Lake Simojärvi. High percentage of peatlands led to high NH4 +-N/NO3 --N ratios derived from data, indicating negligible nitrification in large river subbasins and particularly in small research catchments.  相似文献   

18.
The natural Park of Peñalara consists of a small mountainousarea near Madrid and includes a series of water bodies (fromsmall mountain lakes to temporary ponds and peat bogs), the mostknown of them being the so-called `Laguna Grande dePeñalara'. Due to growing numbers of visitors theenvironmental conditions of this lake started to decline in theearly 1970s because of: (1) the start of severe soil erosionprocesses; (2) the increase of nutrient load; and (3) theintroduction of a non-native fish species. Since the area wasprotected in 1990, several conservation and restoration projectsincluded in an integrated management plan have been developed. Here we summarise some of the results of these efforts: (1) controlled access of livestock and visitors to the area; (2) palaeolimnology studies aimed at inferring recent changes in thewatershed; and (3) monitoring of the limnological features of thesystem. Restoration of this lake and its watershed is intendedto serve as a model for the management of other severely alteredhigh mountain lakes.  相似文献   

19.
The ecological integrity of a lake as a whole can only beassessed through an adequate sampling strategy. Spatialheterogeneity of phytoplankton as well as vertical andhorizontal variability of physical and chemical variables wereestimated from 57 stations at four seasons differing in theirhydrological regime. Resolution of grid positions, located byGPS, was 250 m near the impact site, 500 m for the southernpart of the lake, and 1000 m in the northern part. Data areanalysed by conventional gridding methods as well as in threedimensions with a novel GIS-technique. Horizontal large scaledifferences in several variables are associated withhydrological situations. Local variability in the southern baywas due to input of industrial tailings at times. Spatialvariation of phytoplankton biomass estimated as chlorophyll-aand relevant associated environmental variables were analysedusing a graphical multimetric approach. With this technique,the directly impacted area can be evaluated relative to theremaining part of the lake. The lake is then compared with tworeference lakes, one within the same catchement, the other ina different water-shed. An index of ecological integrity wasdeveloped describing multimetric intra- and interspecific lakevariability. The final index was used to describe the statusof lake water quality relative to a `undisturbed' referencelake. Results showed that Traunsee is ecologically intactalthough its chemistry differs substantially from an`external' reference.  相似文献   

20.
Models are needed that predict both spatial and temporal improvements to ecosystems following reductions of acidifying emissions that produce `acid rain'. Logistic regression models were developed for the occurrence of fish and two fish-eatingbirds, common loons (Gavia immer) and common mergansers(Mergus merganser), using monitoring data collected onlakes across Ontario. These models were applied in the Algomaregion, including the Turkey Lakes Watershed (TLW). Using theWaterfowl Acidification Response Modeling System (WARMS), severalSO2 emission reduction scenarios were simulated, i.e. thosecontributing to measured 1982–1986 sulphate deposition levels, 1994levels (corresponding to full implementation of Canadian SO2emission reductions as stipulated in the 1991 Canada/U.S. AirQuality Agreement), 2010 levels (1994 plus full U.S. reductions),and both a 50% and a 75% further reduction beyond 2010 levels. Some habitat improvements in Algoma were predicted under the 2010scenario for all biota, but substantial increases in habitatquality, especially for mergansers, would occur only under further reductions. The TLW showed little change in chemistry orbiota, while lakes near the Montreal River were predicted toimprove substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号