首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both long duration (>6 h) and high temperature (up to 139 °C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient air sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) from a polyurethane foam (PUF) sorbent. Emissions from open burning of simulated military forward operating base waste were sampled using EPA Method TO-9A for 185 min duration using a filter/PUF/PUF in series combination. After a 54 m3 sample was collected, the sampler was removed from the combustion source and the second PUF was replaced with a fresh, clean PUF. An additional 6 h of ambient air sampling (171 m3) was conducted and the second PUF was analyzed to determine if the PCDD/PCDF transferred from the filter and the first PUF. Less than 4.4% of the initial PCDD/PCDF was lost to the second PUF. To assess the potential for blow off of PCDD/PCDF analytes during open air sampling, the mobility of spiked mono- to hepta-PCDD/PCDF standards across a PUF sorbent was evaluated from ambient air temperatures to 145 °C with total volumes between 600 L and 2400 L. Lower molecular weight compounds and higher flow amounts increased release of the spiked standards consistent with vapor pressure values. At 600 L total sampled volume, the release temperature for 1% of the tetra-CDD (the lowest chlorinated homologue with a toxic compound) was 87 °C; increasing the volume fourfold reduced this temperature to 73 °C.  相似文献   

2.
The paper addresses the wear particles released from commercially available “low-metallic” automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 °C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles.  相似文献   

3.
Hu X  Zhang Y  Luo J  Xie M  Wang T  Lian H 《Chemosphere》2011,82(10):1351-1357
Foliar uptake of airborne lead is one of the pathways for Pb accumulation in plant organs. However, the approximate contributions of airborne Pb to plant organs are still unclear. In the present study, aerosols (nine-stage size-segregated aerosols and total suspended particulates), a wild plant species (Aster subulatus) and the corresponding soils were collected and Pb contents and isotopic ratios in these samples were analyzed. Average concentration of Pb was 96.5 ± 63.5 ng m−3 in total suspended particulates (TSP) and 20.4 ± 5.5 ng m−3 in the fine fractions of size-segregated aerosols (SSA) (<2.1 μm), higher than that in the coarser fractions (>2.1 μm) (6.38 ± 3.71 ng m−3). Enrichment factors show that aerosols and soils suffered from anthropogenic inputs and the fine fractions of the size-segregated aerosols enriched more Pb than the coarse fractions. The order of Pb contents in A. subulatus was roots > leaves > stems. The linear relationship of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb) among soil, plant and aerosol samples were found. Based on the simple binary Pb isotopic model using the mean 206Pb/207Pb ratios in TSP and in SSA, the approximate contributions of airborne Pb into plant leaves were 72.2% and 65.1%, respectively, suggesting that airborne Pb is the most important source for the Pb accumulation in leaves. So the combination of Pb isotope tracing and the simple binary Pb isotope model can assess the contribution of airborne Pb into plant leaves and may be of interest for risk assessment of the exposure to airborne Pb contamination.  相似文献   

4.
Organochlorine pesticides (OCPs) such as DDT and DDE have been detected in the surface 0.2 m of Vertisols in the lower Namoi Valley of north western New South Wales, Australia even though they have not been applied to crops since 1982. However, their presence in the deeper soil horizons has not been investigated. The objective of this study was to determine if OCPs were present to a depth of 1.2 m in Vertisols under irrigated cotton farming systems in the lower Namoi Valley of New South Wales. Soil was sampled from the 0-1.2 m depths in three sites, viz. the Australian Cotton Research Institute, ACRI, near Narrabri (149°36′E, 30°12′S), and two cotton farms near Wee Waa (149°27′E, 30°13′S) and Merah North (149°18′E, 30°12′S) in northern New South Wales, Australia. The OCPs detected and their metabolites were α-endosulfan, β-endosulfan, endosulfan sulphate, DDD, DDE, DDT and endrin. The metabolite DDE, a breakdown product of DDT, was the most persistent OCP in all depths analysed. Endosulfan sulphate was the second most persistent followed by endrin > α-endosulfan > β-endosulfan > DDT and DDD. DDT was sprayed extensively in the lower Namoi Valley up to the early 1980s and may explain the persistence of DDE in the majority of soil samples. Dicofol and Dieldrin, two OCPs previously undocumented in Vertisols were also detected. The movement of OCPs into the subsoil of Vertisols may occur when irrigation or rain transports soil colloids and organic matter via preferential flow systems into the deeper layers of a soil profile. Persistence of OCPs was closely correlated to soil organic carbon concentrations. The persistence in soil of OCP’s applied to cotton crops grown more than two decades ago suggests that they could enter the food chain. Their presence at depths of 1.2 m suggests that they could move into groundwater that may eventually be used for domestic and stock consumption.  相似文献   

5.
Horel A  Schiewer S 《Chemosphere》2011,83(5):652-660
Bioremediation of sandy soil contaminated with fish-biodiesel, conventional diesel, and blends of both was studied in microcosm experiments at different temperatures, simulating the subarctic environment. While distinct lag, exponential, and stationary phases were observed at 20 °C, degradation at 6 °C was slow and the lag phase continued throughout the 4-week experiment. A three-phase 1st order kinetic model successfully described respiration at 20 °C, a one-phase model was sufficient at 6 °C. For temperatures fluctuating between ∼6 and ∼20 °C, higher than expected microbial activity persisted at 6 °C for several days, due to the presence of active cultures, even though the soil temperature closely followed the air temperature. At 20 °C, respiration peaked already after 1 week, and 18-51% of the initially added fuel was mineralized within 4 weeks, whereby degradation was higher at higher biodiesel percentages. Biodiesel addition accelerated mineralization of blends with regular diesel beyond expectations. In blends with 20% biodiesel, the degradation rate constant was twice as high as for conventional diesel. These synergistic effects are likely due to an active microbial population. Addition of biodiesel to conventional diesel could reduce the impact of diesel spills.  相似文献   

6.
Hwang SH  Park DU  Joo SI  Park HH  Yoon CS 《Chemosphere》2011,85(1):135-139
In this study, we assessed airborne endotoxin levels in university laboratories, hospital diagnostic laboratories, and a biowaste site. We also investigated indoor and outdoor sampling, sampling site, type of ventilation system, presence of open biowaste boxes, weather, and detection of Gram-negative bacteria (GNB). A total of 69 air samples were collected from 11 facilities in three institutions. Average total airborne endotoxin levels ranged from <0.01 to 10.02 EU m−3, with an overall mean of 1.03 EU m−3. Endotoxin levels were high in window-ventilated facilities, in facilities in which GNB were detected; levels were also high when it was rainy (all ps < 0.05). Endotoxin levels were significantly correlated with humidity (r = 0.70, p < 0.01). The presence of HVAC; humidity; and the presence of open biowaste boxes affect endotoxin levels in laboratories.  相似文献   

7.
Concentrations of 16 polycyclic aromatic hydrocarbons (PAHs), 16 phthalate esters (PAEs), eight organochlorine pesticides (OCPs) and seven polychlorinated biphenyls (PCBs) in 17 frequently-consumed varieties of vegetables collected from 48 sites in Huizhou were measured. Concentrations of PAHs and PAEs of leafy vegetables were higher than those of gourd and fruit vegetables but it was the opposite for OCPs and PCBs. A questionnaire of 450 local residents on vegetable consumption showed that the total vegetable ingested rates of females and males were 278.80 g person−1 d−1 and 282.92 g person−1 d−1, respectively. The weight-specific daily intakes of pollutants by females were higher than those by males because of differences in body weight. Twenty-seven pollutants were used to assess the potential risk to human health by calculating target hazard quotient (THQ) values. Results showed that the risk to females was higher than for males. OCPs were the major contributors to the risk for both females and males. The main risks were from consumption of eggplant, Chinese lettuce and luffa and were significantly related to the contents of di-nonyl phthalate, β-hexachlorocyclohexane, γ-hexachlorocyclohexane, p,p-dichlorodiphenyltrichloroethane and p,p-dichlorodiphenyl dichloroethane in vegetables. Although the THQ values induced by individual pollutants were relatively low, the total THQ values induced by 27 pollutants were above 1 in some administrative regions of Huizhou, which might give cause for concern.  相似文献   

8.
Volatile methyl siloxanes (VMSs) are a class of chemicals with an increasing range of applications and widespread distribution in the environment. Passive air samplers (PAS) comprising sorbent-impregnated polyurethane-foam (SIP) disks were first calibrated and then deployed around two wastewater treatment plants (WWTPs) and at two landfill sites to investigate inputs of VMSs to air. SIP-derived air concentrations for ΣVMSs (ng/m3) at background sites on the perimeter of the WWTP were 479 ± 82.3 and comparable to results for the upwind samples at the landfills (333 ± 194). Order of magnitude higher concentrations of ΣVMSs (ng/m3) were found for on-site samples at the WWTPs (3980 ± 2620) and landfills (4670 ± 3360). Yearly emissions (kg/yr) to air were estimated and ranged from 60-2100 and 80-250, respectively, for the cyclic VMSs. These findings demonstrate and quantify for the first time, waste sector emissions of VMSs to the atmosphere.  相似文献   

9.
Li X  Li Y  Zhang Q  Wang P  Yang H  Jiang G  Wei F 《Chemosphere》2011,84(7):957-963
The concern about emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from steel industrial parks has increased in the past decades. In this study, polyurethane foam (PUF)-disk based passive air samples were collected in and around a big steel industrial park of Anshan, Northeast China from June 2008 to March 2009. The levels, seasonal variations and potential sources of PCDD/Fs, PCBs and PBDEs in the atmosphere around the steel industrial complex were investigated, and potential contribution of these three groups of persistent organic pollutants (POPs) from iron and steel production was also assessed. The air concentrations of ∑17PCDD/Fs (summer: 0.02-2.77 pg m−3; winter: 0.20-9.79 pg m−3), ∑19PCBs (summer: 23.5-155.8 pg m−3; winter: 14.6-81.3 pg m−3) and ∑13PBDEs (summer: 2.91-10.7 pg m−3; winter: 1.10-3.89 pg m−3) in this targeted industrial park were relatively low in comparison to other studies, which implied that the industrial activities of iron and steel had not resulted in serious contamination to the ambient air in this area. On the whole, the air concentrations of PCDD/Fs in winter were higher than those of summer, whereas the concentrations of PCBs and PBDEs showed opposite trends. The result from principal component analysis indicated that coal combustion might be the main contributor of PCDD/F sources in this area.  相似文献   

10.
The photo-Fenton reaction was applied as a novel method for the removal of volatile organic compounds (VOCs) in the gas phase, and its effectiveness was experimentally examined. In conventional VOCs removal methods using a photocatalyst or ozone, VOCs are oxidized in the gas phase. Therefore, incompletely oxidized intermediates, which may have adverse effects on health, are likely to contaminate the treated air. On the other hand, in the VOCs removal method developed in this study, because the VOCs are oxidized in the liquid phase by the photo-Fenton reaction, any incompletely oxidized intermediates produced are confined to the liquid phase. As a result, the contamination of the treated air by these harmful intermediates can be prevented. Using a semi-batch process, it was found that the removal efficiency for toluene in a one-pass test (residence time of 17 s) was 61%, for an inlet toluene gas concentration of 930 ppbv, an initial iron ion concentration of 20 mg L−1, and an initial hydrogen peroxide concentration of 630 mg L−1. The removal efficiency was almost constant as long as H2O2 was present in the solution. Proton transfer reaction mass spectrometry analysis confirmed the absence of any incompletely oxidized intermediates in the treated air.  相似文献   

11.
A study of dimethylamine photo-dissociation in the gas phase has been conducted using UV radiation delivered from a KrBr* excilamp, driven by a sinusoidal electronic control gear with maximum emission at wavelength of 207 nm. The electrical input power and radiant power of the lamp were measured to determine their effects on the degradation. The influence of flow velocity and initial concentration of dimethylamine were also examined. In order to evaluate the photo-dissociation process comprehensively, several parameters were investigated, including removal efficiency, energy yield, carbon balance and CO2 selectivity. It is shown that the removal efficiency increases with enhanced input power and decreased gas flow rate. A high removal efficiency of 68% is achieved for lamp power 102 W and flow velocity 15 m3 h−1. The optimum dimethylamine initial concentration is around 3520 mg m−3, for which the energy yield reaches up to 442 g kW h−1 when the input power is 65 W. In addition, two chain compounds (1,3-bis-dimethylamino-2-propanol; 3-penten-2-one, 4-amino) and three ring organic matters (1-azetidinecarboxaldehyde, 2,2,4,4-tetramethyl; N-m-tolyl-succinamic acid; p-acetoacetanisidide), were identified by GC–MS as secondary products, in order to demonstrate the pathways of the dimethylamine degradation.  相似文献   

12.
The aim of the present work was to determine the denitrification potential of aerobic granular sludge for concentrated nitrate wastes. We cultivated mixed microbial granules in a sequencing batch reactor operated at a superficial air velocity of 0.8 cm s−1. The denitrification experiments were performed under anoxic conditions using serum bottles containing synthetic media with 225-2250 mg L−1 NO3-N. Time required for complete denitrification varied with the initial nitrate concentration and acetate to nitrate-N mass ratio. Complete denitrification of 2250 mg L−1 NO3-N under anoxic conditions was accomplished in 120 h. Nitrite accumulation was not significant (<5 mg N L−1) at initial NO3-N concentrations below 677 mg L−1. However, denitrification of higher concentrations of nitrate (?900 mg N L−1) resulted in buildup of nitrite. Nevertheless, nitrite buildups observed in present study were relatively lower compared to that reported in previous studies using flocculent activated sludge. The experimental results suggest that acetate-fed aerobic granular sludge can be quickly adapted to treat high strength nitrate waste and can thus be used as seed biomass for developing high-rate bioreactors for efficient treatment of concentrated nitrate-bearing wastes.  相似文献   

13.
17α-ethynylestradiol (EE2), a synthetic estrogen prescribed as a contraceptive, was measured in Shorthead Redhorse Suckers (ShRHSs) (Moxostoma macrolepidotum) collected near a wastewater treatment plant (WWTP) in the St. Clair River (Ontario, Canada). We detected EE2 in 50% of the fish samples caught near the WWTP (Stag Island), which averaged 1.6 ± 0.6 ng/g (wet weight) in males and 1.43 ± 0.96 ng/g in females. No EE2 was detected in the samples from the reference site (Port Lambton) which was 26 km further downstream of the Stag Island site. Only males from Stag Island had VTG induction, suggesting the Corunna WWTP effluent as a likely source of environmental estrogen. EE2 concentrations were correlated with total body lipid content (R2 = 0.512, p < 0.01, n = 10). Lipid normalized EE2 concentrations were correlated with δ15N (R2 = 0.436, p < 0.05, n = 10), suggesting higher EE2 exposures in carnivores. Our data support the hypothesis of EE2 bioaccumulation in wild fish.  相似文献   

14.
Experimental investigations were carried out on removal of arsenic from contaminated groundwater by employing a new flat-sheet cross flow membrane module fitted with a hydrophobic polyvinylidenefluoride (PVDF) microfiltration membrane. The new design of the solar-driven membrane module in direct contact membrane distillation (DCMD) configuration successfully produced almost 100 per cent arsenic-free water from contaminated groundwater in a largely fouling-free operation while permitting high fluxes under reduced temperature polarization. For a feed flow rate of 0.120 m3/h, the 0.13 μm PVDF membrane yielded a high flux of 74 kg/(m2 h) at a feed water temperature of 40 °C and, 95 kg/m2 h at a feed water temperature of 60 °C. The encouraging results show that the design could be effectively exploited in the vast arsenic-affected rural areas of South-East Asian countries blessed with abundant sunlight particularly during the critical dry season.  相似文献   

15.
The EQuilibrium Criterion (EQC) model developed and published in 1996 was recently revised to include improved treatment of input partitioning and reactivity data, temperature dependence and an easier sensitivity and uncertainty analysis. This New EQC model was used to evaluate the multimedia, fugacity-based fate of decamethylcyclopentasiloxane (D5; CAS No. 541-02-6) in the environment over a temperature range of 1–25 °C. In addition, Monte Carlo uncertainty analysis was used to quantitatively determine the influence of temperature and input partitioning and reactivity data on the behavior of D5 under various emission scenarios. Results indicated that emission mode was the most influential factor determining the fate and distribution of D5 in the model environment. When emitted to air and soil, D5 partitioned to and remained in the air compartment where rates of removal from degradation and advection processes were relatively rapid. In contrast, D5 emitted to water resulted in a substantial mass fraction of D5 being accumulated in the sediment compartment, where rates of removal from degradation and advection processes were slow. The mass distributions and fate of D5 in the model environment were strongly influenced by multiple input parameters, including temperature, the mode of emission (especially emission rate to water), KOC and half-life in air. As temperature decreased from 25 °C to 1 °C, KOC and half-life in air became increasingly more influential such that the mass distribution of D5 increased in air and decreased in sediment, resulting in decreased overall persistence.  相似文献   

16.
17.
Lim LL  Lynch R 《Chemosphere》2011,82(4):613-620
Methyl tert-butyl ether (MTBE) groundwater remediation projects often require a combination of technologies resulting in increasing the project costs. A cost-effective in situ photocatalytic reactor design, Honeycomb II, is proposed and tested for its efficiency in MTBE degradation at various flows. This study is an intermediate phase of the research in developing an in situ photocatalytic reactor for groundwater remediation. It examines the effect of the operating variables: air and water flow and double passages through Honeycomb II, on the MTBE removal. MTBE vaporisation is affected by not only temperature, Henry’s law constant and air flow to volume ratio but also reactor geometry. The column reactor achieved more than 84% MTBE removal after 8 h at flows equivalent to horizontal groundwater velocities slower than 21.2 cm d−1. Despite the contrasting properties between a photocatalytic indicator methylene blue and MTBE, the reactor efficiency in degrading both compounds showed similar responses towards flow (equivalent groundwater velocity and hydraulic residence time (HRT)). The critical HRT for both compounds was approximately 1 d, which corresponded to a velocity of 21.2 cm d−1. A double pass through both new and used catalysts achieved more than 95% MTBE removal after two passes in 48 h. It also verified that the removal efficiency can be estimated via the sequential order of the removal efficiency of one pass obtained in the laboratory. This study reinforces the potential of this reactor design for in situ groundwater remediation.  相似文献   

18.
Sun Y  Takaoka M  Takeda N  Wang W  Zeng X  Zhu T 《Chemosphere》2012,88(7):895-902
An activated carbon (AC) containing a high concentration (374 mg g−1) of Fe was prepared by carbonization of an ion-exchange resin. To examine its chemical reactivity as a catalyst to decompose 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153), the decomposition parameters of temperature and time were varied under air or N2. Decomposition at 350 °C was achieved within 15 min under air and 30 min under N2, and the efficiency of PCB-153 decomposition was 99.7% and 98.0%, respectively. An analysis of inorganic chloride ions revealed that PCB-153 was mineralized effectively during the decomposition. The Brunauer-Emmett-Teller (BET) surface area and pore volume of the AC were measured to assess the adsorption capacity before and after the decomposition. The differences between decomposition under air and N2 reflected the differences in the BET surface and pore volume measurements. A decomposition pathway was postulated, and the reactive characteristics of chlorine atoms loaded on the benzene rings followed the order of para meta ortho, which agrees with the calculated results from a density functional theory study.  相似文献   

19.
Organosolv lignin was treated with ethanol at sub/supercritical temperatures (200, 275, and 350 °C) for conversion to low molecular phenols under different reaction times (20, 40, and 60 min), solvent-to-lignin ratios (50, 100, and 150 mL g−1), and initial hydrogen gas pressures (2 and 3 MPa). Essential lignin-degraded products, oil (liquid), char (solid), and gas were obtained, and their yields were directly influenced by reaction conditions. In particular, concurrent reactions involving depolymerization and recondensation as well as further (secondary) decomposition were significantly accelerated with increasing temperature, leading to both lignin-derived phenols in the oil fraction and undesirable products (char and gas).  相似文献   

20.
Chi KH  Hsu SC  Lin CY  Kao SJ  Lee TY 《Chemosphere》2011,83(6):745-752
In this study, polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) concentrations and depositions in ambient air, water column and sediment were measured at a coupled reservoir-watershed system in northern Taiwan. The atmospheric PCDD/F concentration measured in the vicinity of the reservoir ranged from 4.9 to 39 fg I-TEQ m−3 and the Asian dust storm in February accounted for the peak value, which corresponded to a total suspended particle concentration of 128 μg m−3. The atmospheric PCDD/F deposition ranged from 1.4 to 19 pg I-TEQ m−2 d−1, with higher deposition occurring during winter and spring (long-range transport events). During summer, when atmospheric deposition is lower, consecutive tropical cyclones (typhoons) bring heavy rainfall that enhances soil erosion and creates turbidity-driven intermediate flow. This results in significantly higher PCDD/F deposition in water column of the reservoir at 70 m water depth (179 pg I-TEQ m−2 d−1) than at 20 m (21 pg I-TEQ m−2 d−1) during typhoon event. The accumulation rate of PCDD/Fs (9.1 ng I-TEQ m−2 y−1) in the reservoir sediments (depth: 0-2 cm) was consistent with PCDD/F deposition obtained from water column (6.1 and 8.3 ng I-TEQ m−2 y−1); however, it is significantly higher when compared to the atmospheric deposition (2.0 ng I-TEQ m−2 y−1). Based on the mass balance between the measurements of atmospheric deposition and sinking particles in water column, around 54-74% of PCDD/F inputs into the reservoir were contributed by the catchment erosion during normal period. However, the PCDD/F input contributed by the enhanced catchment erosion significantly increased to 90% during intensive typhoon events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号