首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Development of any numerical ground‐water model is dependent on hydrogeologic data describing the subsurface. These data are obtained from geologic core analyses, stratigraphic analyses, aquifer performance tests, and geophysical studies. But typically in remote areas, these types of data are very sparse and site‐specific in terms of the aerial extent of the resource to be modeled. Uncertainties exist as to how well the available data from a few locations defines a heterogeneous surficial aquifer such as the Biscayne Aquifer in Miami‐Dade County, Florida. This is particularly the case when an exceptionally conductive horizontal flow zone is detected at one site due to specialized testing that was not historically conducted at the other at sites that provided data for the model. Not adequately accounting for the potential effect of the high flow zone in the aquifer within a ground‐water numerical model, even though the zone may be of very limited thickness, might underpredict the well field protection capture boundaries. Applied Stochastic ground‐water modeling in determining well field protection zones is steadily becoming important in addressing the uncertainty of the hydrogeologic subsurface parameters, specifically in karstic heterogeneous aquifers. This is particularly important in addressing the uncertainty of a 60‐day travel time capture zone in the Northwest Well Field, Miami‐Dade County, where a predominantly high flow zone controls much of the flow in the production wells. A stochastic ground‐water modeling application along with combination of pilot points and regularization technique is presented to further consolidate the uncertainty of the subsurface.  相似文献   

2.
As monitoring is essential for the proper management of geological storage of carbon dioxide (CO2), the ability to value information from monitoring is indispensable to adequately design a monitoring program. It is necessary to judge whether the expected improvement in management is worth the cost of monitoring. The value of information (VOI) is closely related to the possible increase in expected utility gained by gathering the information, the concept of which can be applied to such judgement. Although VOI analysis has been extensively studied in the context of decision analysis, its application to the management of carbon dioxide capture and storage (CCS) operations is rare. This paper introduces and discusses the methodology of VOI analyses in the context of monitoring CO2 storage. A motivating problem with discrete probabilities is used to illustrate the concept of VOI. It is demonstrated that information is not always of value; for information to be worthwhile, monitoring under uncertainty must satisfy certain conditions. This concept is then extended to continuous probability distributions. The effects of prior uncertainty and information reliability on the VOI are examined. It is shown that an excessive improvement in information accuracy yields little value and that the optimal level of reliability can be inferred. VOI analyses provide quantitative insights into the value of information-gathering activities and therefore can be an objective means to adequately design and impartially justify a monitoring program.  相似文献   

3.
ABSTRACT: As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.  相似文献   

4.
/ This paper presents an approach for producing aquifer sensitivity maps from three-dimensional geologic maps, called stack-unit maps. Stack-unit maps depict the succession of geologic materials to a given depth, and aquifer sensitivity maps interpret the successions according totheir ability to transmit potential contaminants. Using McHenry County, Illinois, as a case study, stack-unit maps and an aquifer sensitivity assessment were made to help land-use planners, public health officials, consultants, developers, and the public make informed decisions regarding land use. A map of aquifer sensitivity is important for planning because the county is one of the fastest growing counties in the nation, and highly vulnerable sand and gravel aquifers occur within 6 m of ground surface over 75% of its area. The aquifer sensitivity map can provide guidance to regulators seeking optimal protection of groundwater resources where these resources are particularly vulnerable. In addition, the map can be used to help officials direct waste-disposal and industrial facilities and other sensitive land-use practices to areas where the least damage is likely to occur, thereby reducing potential future liabilities. KEY WORDS: Geologic mapping; Groundwater; Aquifers; Aquifer sensitivity; Land-use planning  相似文献   

5.
Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and landuse planning. This contribution aims at estimating aquifer vulnerability by applying the RISKE model in Banyas Catchment Area (BCA), Tartous Prefecture, west Syria. An additional objective is to demonstrate the combined use of the RISKE model and a geographical information system (GIS) as an effective method for groundwater pollution risk assessment. The RISKE model uses five environmental parameters (Rock of aquifer media, Infiltration, Soil media, Karst, and Epikarst) to characterize the hydro-geological setting and evaluate aquifer vulnerability. The elevated eastern and low western part of the study area was dominated by high vulnerability classes, while the middle part was characterized by moderate vulnerability classes. Based on the vulnerability analysis, it was found that 2% and 39% of BCA is under low and high vulnerability to groundwater contamination, respectively, while more than 52% and 5% of the area of BCA can be designated as an area of moderate and very high vulnerability to groundwater contamination, respectively. The GIS technique has provided an efficient environment for analyses and high capabilities of handling a large amount of spatial data.  相似文献   

6.
Geologic carbon sequestration is the injection of anthropogenic CO2 into deep geologic formations where the CO2 is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO2 into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.  相似文献   

7.
The Denver Basin Aquifer System (DBAS) is a critical groundwater resource along the Colorado Front Range. Groundwater depletion has been documented over the past few decades due to the increased water use among users, presenting long‐term sustainability challenges. A spatiotemporal geostatistical analysis is used to estimate potentiometric surfaces and evaluate groundwater storage changes between 1990 and 2016 in each of the four DBAS aquifers. Several key depletion patterns and spatial water‐level changes emerge in this work. Hydraulic head changes are the largest in the west‐central side of the DBAS and have decreased in some areas by up to 180 m since 1990, while areas to the northwest show increases in hydraulic head by over 30.5 m. The Denver and Arapahoe aquifers show the largest groundwater storage losses, with the highest rates occurring in the 2000s. The results highlight uncertainty in the volumetric predictions under various storage coefficient calculations and emphasize the importance of representative aquifer characterization. The observed groundwater storage depletions are due to a combination of factors, which include population growth increasing the demand for water, variable precipitation, and drought influencing recharge, and increased groundwater pumping. The methods applied in this study are transferable to other groundwater systems and provide a framework that can help assess groundwater depletion and inform management decisions at other locations.  相似文献   

8.
A pilot-scale experiment for carbon dioxide (CO2) sequestration was undertaken at the Nagaoka test field in Japan. Time-lapse crosswell seismic tomography was conducted to detect and monitor the movement of CO2 injected into an aquifer. We applied difference analysis with data normalization (DADN) to the time-lapse data to eliminate false images that were apparent in a conventionally processed difference section. Conventional difference analysis calculates travel-time delays after inversion, whereas the DADN method calculates them from raw travel-time records before inversion. Thus, fewer errors are generated with the DADN method compared to a conventional inversion analysis. We applied the DADN method to time-lapse tomography data recorded before and after the injection of CO2 and computed the velocity variation in a subsurface section, which clearly showed the distribution of CO2 flooding within a high permeability zone in the aquifer and showed no CO2 leakage into the caprock. Our results also show the maximum velocity decrease as a result of CO2 injection was about 9%, which is close to the results obtained in laboratory experiments. Finally, numerical simulations were inverted to test the effectiveness of the conventional and DADN methods in dealing with noise. These tests showed that the DADN method effectively reduces unique coherent noise for particular receiver and source combinations. We concluded that the DADN method provides useful data for monitoring the flow of CO2 sequestered in underground aquifers.  相似文献   

9.
The application of remote sensing techniques to both determine the extent of surface water and to trace geologic structures, lithologies and geomorphic features which may be sources for groundwater is reviewed and examples given of the application of the technique to hydrogeologic studies. It is recommended that remote sensing techniques be applied first followed by geophysical surveys. Airborne and ground geophysical survey methods can be highly effective in locating exploitable occurrences of groundwater. For such surveys to give useful data the correct method must be selected. Various geophysical methods are described and examples given which show their proper application. Cet article étudie la mise en oeuvre des techniques de télédétection pour déterminer l'étendue des eaux de surface et repérer les structures géologiques, la nature des roches et les eléments géomorphologiques qui peuvent receler des eaux souterraines. II fournit des exemples de mise en oeuvre de ces techniques á des fins d'études hydrogéologiques. II recommande que les techniques de télédétection soient utilisées en premier et soient suivies par des campagnes géophysiques. La géophysique terrestre et aéroportée peut ětre très efficace pour localiser des ressources aquifères souterraines exploitables. Pour obtenir des données utilisables, il convient de choisir la méthode appropriée. Enfin, I'article passe en revue différentes méthodes géophysiques et donne des exemples réussis de leurs applications. La aplicación de sensores remotos para determinar la extensión de aguas superficiales y definir las estructuras geológicas, la litología y características geomorfológicas que puedan dar origen a aguas subterráneas se analizan en este artículo y se dan ejemplos de la aplicación de esta técnica a estudios hidrológicos. Se recomienda que técnicas de sensores remotos precedan los estudios geofísicos. Estos estudios pueden ser muy efectivos en la ubicación de ocurrencias explotables de recursos de agua subterránea. En este artículo se describen y dan ejemplos de varios métodos geofísicos y de aplicación.  相似文献   

10.
Statistical methods are widely used in environmental studies to evaluate natural hazards. Within groundwater vulnerability in particular, statistical methods are used to support decisions about environmental planning and management. The production of vulnerability maps obtained by statistical methods can greatly help decision making. One of the key points in all of these studies is the validation of the model outputs, which is performed through the application of various techniques to analyze the quality and reliability of the final results and to evaluate the model having the best performance. In this study, a groundwater vulnerability assessment to nitrate contamination was performed for the shallow aquifer located in the Province of Milan (Italy). The Weights of Evidence modeling technique was used to generate six model outputs, each one with a different number of input predictive factors. Considering that a vulnerability map is meaningful and useful only if it represents the study area through a limited number of classes with different degrees of vulnerability, the spatial agreement of different reclassified maps has been evaluated through the kappa statistics and a series of validation procedures has been proposed and applied to evaluate the reliability of the reclassified maps. Results show that performance is not directly related to the number of input predictor factors and that is possible to identify, among apparently similar maps, those best representing groundwater vulnerability in the study area. Thus, vulnerability maps generated using statistical modeling techniques have to be carefully handled before they are disseminated. Indeed, the results may appear to be excellent and final maps may perform quite well when, in fact, the depicted spatial distribution of vulnerability is greatly different from the actual one. For this reason, it is necessary to carefully evaluate the obtained results using multiple statistical techniques that are capable of providing quantitative insight into the analysis of the results. This evaluation should be done at least to reduce the questionability of the results and so to limit the number of potential choices.  相似文献   

11.
ABSTRACT: Effective monitoring configurations for contaminant detection in groundwater can be designed by analyzing the spatial relationships between candidate sampling sites and aquifer zones susceptible to contamination. Examples of such zones are the domain underlying the contaminant source, zones of probable contaminant migration, and areas occupied by water supply wells. Geographic information systems (GIS) are well-suited to performing key groundwater monitoring network design tasks, such as calculating values for distance variables which quantify the proximity of candidate sites to zones of high pollution susceptibility, and utilizing these variables to quantify relative monitoring value throughout a model domain. Through a case study application, this paper outlines the utility of GIS for detection-based groundwater quality monitoring network design. The results suggest that GIS capabilities for analyzing spatially referenced data can enhance the field-applicability of established methodologies for groundwater monitoring network design.  相似文献   

12.
Leakage and spill of petroleum hydrocarbons from underground storage tanks and pipelines have posed significant threats to groundwater resources across many petroleum-contaminated sites. Remediation of these sites is essential for protecting the soil and groundwater resources and reducing risks to local communities. Although many efforts have been made, effective design and management of various remediation systems are still challenging to practitioners. In recent years, the subsurface simulation model has been combined with techniques of optimization to address important problems of contaminated site management. The combined simulation-optimization system accounts for the complex behavior of the subsurface system and identifies the best management strategy under consideration of the management objectives and constraints. During the past decades, a large number of studies were conducted to simulate contaminant flow and transport in the subsurface and seek cost-effective remediation designs. This paper gives a comprehensive review on recent developments, advancements, challenges, and barriers associated with simulation and optimization techniques in supporting process control of petroleum waste management and site remediation. A number of related methodologies and applications were examined. Perspectives of effective site management were investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns in uncertainty, necessity of post-modeling analysis, and usefulness of development of process control techniques.  相似文献   

13.
The impact of urbanization on groundwater is not simple to understand, as it depends on a variety of factors such as climate, hydrogeology, water management practices, and infrastructure. In semiarid landscapes, the urbanization processes can involve high water consumptions and irrigation increases, which in turn may contribute to groundwater recharge. We assessed the hydrological impacts of urbanization and irrigation rates in an Andean peri‐urban catchment located in Chile, in a semiarid climate. For this purpose, we built and validated a coupled surface–groundwater model that allows the verification of a strong stream–aquifer interaction in areas with shallow groundwater, higher than some sewers and portions of the stream. Moreover, we also identified a significant local recharge associated with pipe leaks and inefficient urban irrigation. From the evaluation of different future scenarios, we found a sustainable water conservation scenario will decrease the current groundwater levels, while the median flow reduces from 408 to 389 L/s, and the low flow (Q95%) from 43 to 22L/s. Overall, our results show the relevance of integrating the modeling of surface and subsurface water resources at different spatial and temporal scales, when assessing the effect of urban development and the suitability of urban water practices.  相似文献   

14.
ABSTRACT: Unsustainable withdrawals from regional aquifers have resulted in adverse impacts considerable distances from the point locations of supply wells. In one area of the southeastern (SE) Coastal Plain, conservative estimates for repair/replacement of some residential wells damaged or destroyed by unsustainable yield from the Floridan aquifer system exceeded $4 million. However, a comprehensive assessment of damage/economic loss to private property and public resources due to unsustainable yield from that regional karst aquifer has not been made. Uncalculated direct costs to home‐owners from damage attributed to those withdrawals are associated with destruction of homes from increased sinkhole formation, devalued waterfront property, and removal of diseased and dead trees. Examples of other uncalculated economic burdens resulting from unsustainable aquifer yield in the SE Coastal Plain include: (1) irreversible damage to the aquifer matrix and concomitant increased potential for groundwater contamination, (2) large‐scale wildfires with subsequent degradation of air quality, debilitation of transportation corridors, and destruction of timber, wildlife habitat and property, and (3) destruction of “protected” natural areas. This paper provides a general background of the regional Floridan aquifer system's karst characteristics, examples of known impacts resulting from ground water mining in the SE Coastal Plain, and examples of additional damage that may be related to unsustainable yield from the Upper Floridan aquifer. Costs of these impacts have not been calculated and are not reflected in the price users pay for ground water. Evidence suggests that the classic watershed management approach must be revised in areas with mined regional karst aquifers to include impacts of induced recharge from the surficial aquifer, and subsurface inter‐basin flow. Likewise, associated impacts to surface water and interrelated systems must be calculated. The true cost of groundwater mining to this and future generations should be determined using a multidisciplinary approach.  相似文献   

15.
In this article, the authors explore their recent study, which introduces the concept of extracting saline water and fresh water simultaneously from groundwater aquifers to produce water that is suitable for irrigation. To achieve these results, multiwell modeling concepts are used to exploit both the saline and nonsaline aquifer domains from geologic formations where a freshwater aquifer domain is either underlain or overlain by a saline aquifer domain. The water from these domains are either mixed to an acceptable salinity level after independent withdrawal from separate, saline or nonsaline domains present within the same aquifer, or mixed from the domains to achieve acceptable levels of salinity before withdrawal.  相似文献   

16.
Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO2 geologic storage that predicts not only CO2 migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO2 injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO2 injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km × 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO2 was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO2 plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.  相似文献   

17.
Remotely sensed vegetation indices correspond to canopy vigor and cover and have been successfully used to estimate groundwater evapotranspiration (ETg) over large spatial and temporal scales. However, these data do not provide information on depth to groundwater (dtgw) necessary for groundwater models (GWM) to calculate ETg. An iterative approach is provided that calibrates GWM to ETg derived from Landsat estimates of the Enhanced Vegetation Index (EVI). The approach is applied to different vegetation groups in Mason Valley, Nevada over an 11‐year time span. An uncertainty analysis is done to estimate the resulting mean and 90% confidence intervals in ETg to dtgw relationships to quantify errors associated with plant physiologic complexity, species variability, and parameter smoothing to the 100 m GWM‐grid, temporal variability in soil moisture and nonuniqueness in the solution. Additionally, a first‐order second moment analysis shows ETg to dtgw relationships are almost exclusively sensitive to estimated land surface, or maximum, ETg despite relatively large uncertainty in extinction depths and hydraulic conductivity. The EVI method of estimating ETg appears to bias ETg during years with exceptionally wet spring/summer conditions. Excluding these years improves model performance significantly but highlights the need to develop a methodology that accounts not only on quantity but timing of annual precipitation on phreatophyte greenness.  相似文献   

18.
ABSTRACT: Reliable and consistent estimation of the components of the hydraulic conductivity tensor provides information needed to make proper decisions regarding clean up and restoration of contaminated aquifers. In this study, the nonlinear least-squares estimation technique was applied to drawdown versus time data from three or more observation wells to determine a theoretical ellipse of equal drawdown. The angle of rotation of this ellipse with respect to the working coordinate axes was determined by a procedure based on contouring the drawdowns at a given time. This ellipse, in turn, was used to estimate the directions and magnitudes of the horizontal components of the hydraulic conductivity tensor. The technique is applicable to confined, as well as leaky, aquifers. Sources of error in this technique include nonhomogeneity of the aquifer and partial penetration of the pumping and observation wells into the aquifer. The procedure presented may be used as an additional tool to verify computations of hydraulic conductivity anisotropy based on other techniques.  相似文献   

19.
ABSTRACT: This paper analyzes the sensitivity of drawdown to four hydraulic parameters in unconfined aquifers: horizontal and vertical hydraulic conductivity Kr and Kz, storage coefficient S, and specific yield Sy. Sensitivity coefficients indicate that the sensitivity vanes with time for each aquifer parameter, and Kr, Kz, S, and Sy are identifiable from recovery test data. An inverse method was used to calculate the four parameters from residual drawdowns. Results of application examples demonstrate that residual data provide valid information in the determination of unconfined aquifer hydraulic parameters.  相似文献   

20.
ABSTRACT: Discharge from flooded abandoned subsurface coal mines is considered a potential source for water supplies where other acceptable water sources are not available. The objective of this study was to develop procedures for determining sustainability of mine‐water discharge using rainfall and discharge data for a case study site. The study site is located in southwest Virginia where Late Paleozoic sequences of sandstone, coal, and shale predominate. A rain gauge and a flow rate monitoring system were installed at the site and data were collected for a period of 100 days. The recording period corresponded with one of the driest periods in recent years and, therefore, provided valuable information regarding the flow sustainability during baseflow conditions. From available data on underground mining patterns, geology, and ground water flow regimes, it was determined that a coal mine aquifer exhibits hydraulic characteristics very similar to the extremely heterogeneous systems observed in karst aquifers, and the mine discharge is analogous to springflow. Thus, techniques commonly used in karst‐water systems and springflow analysis were used to develop rainfall/mine‐discharge relationships. Springflow recession analysis was performed on five rainfall recessions and the coefficient for each recession was compared and interpreted in light of known geologic information. It was found that the recession coefficients described the mine discharge adequately and the mine aquifer response to a rainfall pulse was very similar to the response from certain types of karst aquifers. A cross‐correlation analysis was performed to verify the results of the recession analysis and to develop a “black box” statistical model for discharge data. The correlation analysis proved the validity of springflow recession analysis for mine discharge. The recorded data length was not adequate to create a statistical model, however, but a procedure was proposed for a statistical model that could be used with large flow records. For the study site, the mine discharge was found to be sustainable for a prolonged period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号