首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A microwave technique was used to prepare foams from different potato starches in granular form, with varying amounts of amylose content, and water. In addition to native potato starch (PN), high amylose potato starch (HAP) and potato amylopectin (PAP) were used, as well as mixtures thereof. In all cases the native crystallinity of starch granules was lost upon microwave treatment and an amorphous material was created. An increased concentration of starch in the initial water dispersion resulted in a less dense foam structure. The potato amylopectin formed open cell foams, whereas increased amylose content, as in native potato starch, yielded a more compact structure with irregular pore shapes. The high amylose potato starch yielded a structure with hardly any porosity. Foaming experiments were done to compare pre-gelatinized and granular starches dispersed in water. The pre-gelatinisation did not affect the pore formation process. These experiments indicated that the molecular architecture of starch polymers is more important for foam formation than starch polymer organization in the granules. Studies of temperature profile and dry matter content during microwave treatment showed that water evaporates more rapidly from a high amylose starch solution than native potato starch and potato amylopectin solutions. Rheological measurements showed that the amylose solution had much lower viscosity than starch and amylopectin. This confirms that polymer – water interaction, such as in amylopectin solution, favours stabilization of bubbles formed upon boiling and evaporation of water, which yields high porosity materials.  相似文献   

2.
The present investigation was undertaken to characterize the biodegradation pattern of chemically modified starch films. Chemically modified starch films obtained by esterification of the hydroxyl groups of the polysaccharide have shown lower water sorption than native starch films, being therefore more attractive for a number of processing applications. However, no systematic study characterizing their biodegradation behavior and comparing it with the degradation pattern of native starch films has still been published. In the current contribution we characterized the enzymatic degradation pattern of three derivatized starch films by use of a commercial α-amylase from Bacillus licheniformis. Optimum degradation conditions were chosen upon assaying the effect of enzyme load and temperature on the reaction course of native starch films. Under the conditions selected, comparison of different derivatization procedures revealed that the starch film modified with octanoyl chloride was enzymatically hydrolyzed at a much higher rate than native starch film. Maleated starch films also showed higher susceptibility to α-amylolytic hydrolysis than native starch, whereas acetylated starch showed a hydrolysis pattern similar to that of native starch. Differences in degradation rates of chemically modified films were explained in terms of their amylose content which promotes dense networks that hinder the access of starch-degrading enzymes.  相似文献   

3.
The effects of starch structures, in particular amylose content, on grafting reactions were investigated using thermal gravimetric analysis (TGA), nuclear magnetic resonance, X-ray diffraction (XRD). As a model system, corn starches with different amylose contents (0, 26, 50 and 80 %) were grafted onto acrylamide to produce superabsorbent polymers (SAPs). The weight loss measured by TGA at different temperature was used to analyze the grafting ratio in quantity. In general, the grafting ratio increased (about 10 %) with increasing starch amylose content, and graft chain segment lengths were much lower for the amylopectin-rich (waxy) starch. The high molecular weight and branched structure of the amylopectin reduced the mobility of the polymer chains and increased viscosity, which resulted in resistance to chain growth. The water absorption capability was increased with increasing amylose content for the starch-based SAPs. XRD detection showed that the crystalline structure of all starches was destroyed after grafting reactions. The thermal stability of the polyacrylamide grafted onto the starches increased by about 10 °C, which could be explained by the strong bonding between the grafted polymer chains and the starch matrices.  相似文献   

4.
Starch granules were modified with trisodium trimetaphosphate (TSTP) and characterized by P31-NMR, FTIR and DSC. Seventy-micron films were prepared from modified starch and polycaprolactone blends by solvent casting technique. Three different types of films—PCL (100% polycaprolactone), MOD-ST/PCL (50% modified starch and 50% polycaprolactone blend) and NONMOD-ST/PCL (50% nonmodified starch and 50% polycaprolactone blends)—were prepared, and their thermal, mechanical, and morphologic properties were investigated to show the increased performance of PCL with the addition of starch and also the effect of modification. It was observed that with the addition of starch the Young's modulus of polycaprolactone was increased and became less ductile, whereas tensile strength and elongation at break values decreased. Biodegradation of these films was inspected under different aerobic environments with the presence of Pseudomonas putida, activated sludge, and compost. It was observed that whereas P. putida had almost no effect on degradation during 90 days, with the presence of activated sludge, considerable deformation of films was observed even in the first 7 days of degradation. In a compost environment, degradation was even faster, and all polymer films were broken into pieces within first 7 days of degradation and no film remained after 15 days.  相似文献   

5.
Blends of LDPE/modified starch were prepared, sterilized by gamma radiation and investigated with respect to their microbial degradation by a mixture of fungal strains in liquid medium after 90 days, was analyzed by carbon dioxide (CO2) production (Sturm test). Biodegradation of blends was evaluated by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction; mechanical testing, scanning electron microscopy (SEM). The biodegradation of LDPE/modified starch blends was attributed to microbiological attack, with alterations in the chemical structure of the blend with an increase in the carbonyl and vinyl indices and the appearance of new crystalline symmetry generating a crystalline domain not existing before in the blend and decrease in the mechanical properties.  相似文献   

6.
Modified thermoplastic high amylose starch (MTPS) was synthesized by reactive extrusion in the presence of maleic anhydride (MA) as an esterification agent in a twin-screw extruder. The objective of this work was the preparation of reactive thermoplastic starch in the presence of glycerol and with different amounts of maleic anhydride (MA) and free-radical initiator, in order to improve processability and reactivity. The concentration of MA added varied from 2 to 6 wt% (of starch + glycerol), and the free-radical initiator, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane, also called Luperox 101, varied from 0.1 to 0.5 wt% (of starch + glycerol). Characterization of maleated thermoplastic starch was performed using dynamic light scattering and thermal analysis. Further, proof of chemically modified extrudate was determined by Fourier transform infrared spectroscopy and by soxhlet extraction with acetone. The modified high amylose corn starch (20 or 30% glycerol) could be pelletized and gave pellets that were more transparent than thermoplastic starches not modified with maleic anhydride. There was negligible change in hydrodynamic radius as the percentage of maleic anhydride increased. However, as the percentage of Luperox 101 increased, the hydrodynamic radius decreased. It could be inferred that the molecular weight decreased as the percentage of free-radical initiator increased. Using the maximum temperature in the extrusion process of 165 °C instead of 135 °C caused a decrease in the hydrodynamic radius, due to the high influence of the temperature profile on the molecular weight of the thermoplastic starch. The MTPS samples presented higher melting temperatures compared to TPS samples. The soxhlet studies indicated that the plasticizer, glycerol, was chemically linked to the starch. Using the maximum temperature of 165 °C versus 135 °C in the extrusion temperature profile resulted in more interaction between glycerol and starch.  相似文献   

7.
Biodegradable polymer was prepared as thermoplastic starch (TPS) using rice and waxy rice starches. In order to increase mechanical properties and reduce water absorption of the TPS, cotton fiber was incorporated as the fiber reinforcement into the TPS matrix. The effect of cotton fiber contents and lengths on properties of the TPS was examined. Internal mixer and compression molding machine were used to mix and shape the samples. It was found that the thermoplastic rice starch (TPRS) showed higher stress at maximum load and Young’s modulus but lower strain at maximum load than the thermoplastic waxy rice starch (TPWRS). In addition, stress at maximum load and Young’s modulus of both TPRS and TPWRS increased significantly with the addition of the cotton fiber. Cotton fiber contents and lengths also affected mechanical properties of the TPRS and TPWRS composites. Moreover, water absorption of the TPRS and TPWRS composites decreased by the use of the cotton fibers. FT-IR and XRD techniques were used to study a change in functional group and crystallinity of the thermoplastic starch composites. Morphological, thermal and biodegradable properties of different thermoplastic starch composites were also investigated.  相似文献   

8.
In order to assess feasibility of tropical starches (sago and cassava starches) as biodegradable plastic materials, blending with poly(-caprolactone) (PCL), a biodegradable polymer, was carried out. It was confirmed that the physical properties (tensile strength and elongation) of PCL/sago and PCL/cassava blends were similar to those of PCL/corn blend, suggesting that sago and cassava starches can also be blended with PCL for production of biodegradable plastic. However, the properties of all PCL/starch blends were still low compared with those of polyethylene. Enzymatic degradability evaluation showed that lipase degradation of PCL and-amylase degradation of starch increased as the starch content in the blend increased. Burial test of the blends for 1, 3, and 5 months was carried out and the rate of degradation of the PCL/sago blend was confirmed to be slower than those of PCL/corn and PCL/cassava blends. Observation of the film blends structure by scanning electron microscope revealed that the starch was dispersed in a PCL continuous phase. Furthermore, changes in the film surface before and after enyzme treatments were observed.  相似文献   

9.
Epoxy resin prepared by the reaction of a diglycidyl ether of bisphenol A (DGEBA) and m-xylylenediamine (m-XDA) was modified with 10% wt of epoxidized palm oil (EPO). The EPO was first pre-polymerized with m-XDA at various temperatures and reaction times. The resulting product was then mixed with the epoxy resin at 40?°C and allowed to react at 120?°C for another 3?h. The fully reacted DGEBA/m-XDA/EPO blend was characterized by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis, tensile test, hardness indentation and dynamic mechanical analysis. The SEM study shows that different types of morphology, ranging from phase separated to miscible blends were obtained. A miscible blend was obtained when the m-XDA and EPO were reacted for more than 2?h. The results from DSC analysis show that the incorporation of EPO at 10% wt in the epoxy blend reduced the glass transition temperature (T g). The lowered T g and mechanical properties of the modified epoxy resins are caused by a reduction in crosslinking density and plasticizer effect.  相似文献   

10.
Tartaric acid modified starch microparticles (TA-SM) previously obtained using the dry preparation technique were introduced as filler within glycerol plasticized-corn starch (GCS), the composites being prepared by casting process. The effects of cellulose addition within the TA-SM-GCS matrix on the structure, surface properties and water sorption, as well as mechanical and thermal properties of starch-based composite films were investigated. The water resistance and thermal stability were slightly improved through addition of high content of cellulose due to the inter-component H-bonding between components. The evaluation of mechanical properties evidenced a significant increase of the tensile strength of the composites with increasing the content level of cellulose.  相似文献   

11.
In this work, high-alcoholysis polyvinyl alcohol (PVA) films were fabricated by melt processing and the plasticizing effect of compound polyol plasticizers on PVA were investigated with X-ray diffraction (XRD), differential scanning calorimetry (DSC), rheological measurements, mechanical tests etc. Hydrogen bonding interactions occurred between PVA and plasticizer. With the increase of plasticizer, the flowability of PVA was improved and reached the maximum value at the plasticizer of 20%. Glass transition temperature (T g) and melting point (T m) decreased with the increase of plasticizer content. For the heterogeneous nucleation effect of plasticizer, new polymorph of PVA formed. The viscosity was sensitive to the shear rates. The incorporation of plasticizers into PVA resulted in the increase of elongation at break and impact strength, as well as the decrease of tensile strength.  相似文献   

12.
This study focused on investigating the potential of using canola protein fractions as bio-degradable wood adhesives. Native and sodium bisulfite (NaHSO3)-modified canola protein fractions isolated successively at different pH values (7.0, 5.5, and 3.5) was used as adhesives. Wood specimens were assembled with adhesives at a pressure of 2?MPa at 150, 170, or 190?°C for 10?min. The adhesion performance of adhesives were evaluated by wet, soak, and dry shear strength. Their physicochemical properties: extractability, electrophoresis profiles, thermal, rheological and morphological properties were also characterized. Results showed that canola protein had the highest protein yield and purity at pH 5.5. Electrophoresis profile proved that NaHSO3 cleaved the disulfide bonds in canola protein. This could induce extra charges (RS-SO3 ?) on the protein surface, leading to the reduced apparent viscosity. Thermal analysis implied that the thermal transition temperature of canola protein decreased with modification of NaHSO3. Canola protein adhesives showed excellent dry and soak shear strength with 100?% wood cohesive failure in all curing temperatures. The wet adhesion strength of native and modified canola protein fraction adhesives at pH 5.5 and pH 3.5 (3.9?C4.1?MPa) was higher than the fractions at pH 7.0. NaHSO3 had insignificant effects on the adhesion performance of canola protein adhesives but notably improved the handling and flow-ability properties of canola protein adhesives.  相似文献   

13.
In this paper, we report on the physical properties of films that have been synthesized by using native corn starch (NS) and chemically modified starch (RS4). NS or RS4/PVA blend films were synthesized by using the mixing process and the casting method. Glycerol (GL), sorbitol (SO), and citric acid (CA) were used as additives. The chemically modified starch (RS4) was synthesized by using sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) as a crosslinker. Then, the RS4 thus synthesized was confirmed by using the pancreatin-gravimetric method, swelling power and an X-ray diffractometer (XRD). Tensile strength (TS), elongation (%E), swelling behavior (SB), and solubility (S) of the films were measured. The result of the measurements indicated the RS4-added film was better than the NS-added film. Especially, the RS4/PVA blend film with CA as an additive showed the physical properties superior to other films.  相似文献   

14.
The purpose of this study was to understand how the montmorillonite (MMT) nanoclay influences physical and mechanical properties of thermoplastic starch (TPS), which was produced by a conventional extrusion procedure. MMT nanoclay was added at 0, 4, and 8 % (w/w) concentrations. Transmission electron microscopy (TEM) showed most MMT platelets existed in tactoid structure in the starch matrix. In addition, FTIR spectra indicated TPS/MMT nanocomposites kept chemically stable after the extrusion. Tensile strength (TS) was about 7.0 MPa, while elongation-at-break (E) and elastic modulus (EM) were about 52 % and 32–41 MPa, respectively. Moisture sorption behaviour of the samples was well described by GAB and BET models. Thermal property tests exhibited the glass transition temperature (T g ) of the nanocomposites decreased with increasing MMT from 0 to 8 %, indicating MMT nanoclay had a plasticization effect.  相似文献   

15.
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation.  相似文献   

16.
To simulate the behavior of agricultural mulch coextruded poly(lactic acid)(PLA)/starch films, two stages were carried out. The first was an ultraviolet treatment (UV) at 315 nm, during which glass transition temperature Tg, weight, and molecular weight (MW) decreased and a separation between PLA and starch phase was observed. For the second stage, the mineralization of the carbon of the material was followed using the ASTM (D 5209–92 and 5338–92) and ISO/CEN (14852 and 14855) standard procedures. To measure the biodegradability of polymer material, the assessment of the carbon balance allowed determination of the distribution between the carbon rate used to the biomass synthesis or the respiration process (released CO2), as well as the dissolved organic carbon into the culture medium and the carbon in the residual insoluble material. The influence of the nature of the medium and the standardized procedures on the final rate of biodegradation was investigated. Whatever the standardized method, the biodegradation percentage was significantly stronger in liquid medium (92.4–93.4) than on inert medium (80–83%). In the case of the compost process, only released CO2 was measured and corresponded to 79.1–80.3%.  相似文献   

17.
Poly(hydroxybutyrate-co-valerate) (PHBV) is a completely biodegradable thermoplastic polyester produced by microbial fermentation. The current market price of PHBV is significantly higher than that of commodity plastics such as polyethylene and polystyrene. It is therefore desirable to develop low-cost PHBV based materials to improve market opportunities for PHBV. We have produced low-cost environmentally compatible materials by blending PHBV with granular starch and environmentally benign CaCO3. Such materials can be used for specific applications where product biodegradability is a key factor and where certain mechanical properties can be compromised at the expense of lower cost. The inclusion of granular starch (25 wt%) and CaCO3 (10 wt%) in a PHBV matrix (8% HV, 5% plasticizer) reduces the cost by approximately 40% and has a tensile strength of 16 MPa and flexural modulus of 2.0 Gpa, while the unfilled PHBV/plasticizer matrix has a tensile strength of 27 MPa and a flexural modulus of 1.6 GPa.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

18.
Two dissimilar renewable resource-based thermoplastic acorn nutlet (TPAN) materials were prepared via twin-screw extrusion with the aid of glycerol or monoethanolamine as plasticizers, and then two TPAN/polycaprolactone (PCL) composites with different plasticized systems were prepared. Mechanical test showed that glycerol-based composites had excellent tensile properties, and at a PCL content of 50 wt%, their tensile strength and elongation at break reached 14.4 MPa and 1,361 %, respectively. The micro-morphologic investigation of liquid-nitrogen brittle fracture surface indicated certain interface adhesion between glycerol-based thermoplastic acorn nutlet (GTPAN) and PCL. Dynamic mechanical thermal analysis , differential scanning calorimetry and thermogravimetric analysis demonstrated that the weight ratios of TPAN in composites significantly affected the crystallinity, glass transition temperature (Tg), melting temperature (Tm) and thermal stability of composites. Soil burial degradation analysis displayed that all composites had excellent biodegradability. These results demonstrated that GTPAN/PCL composites had superior mechanical and biodegradable properties, enough to partially replace the conventional thermoplastic plastics.  相似文献   

19.
Dialdehyde starch (DAS) and zein, a hydrophobic corn protein, were investigated to produce biodegradable plastics with improved water resistance and mechanical properties. In the study, dialdehyde starch and zein ratio, plasticizers, and degree of starch oxidation were examined. Increased molding temperature and level of starch oxidation decreased water absorption of the plastic. Tensile strength and Young's modulus increased with starch oxidation. The biodegradation of starting materials and ground plastic specimens was studied in aerobic soil reactors maintained at 25°C for 180 days. Biodegradation of corn starch, zein, and dialdehyde starch for 180 days produced CO2 equivalent to 64, 63, and 10% of theoretical carbon, respectively. Specimens of molded DAS and zein (3 : 1) plastic showed accelerated CO2 evolution compared to DAS and other raw materials alone. By 180 days, specimens made with starch of low oxidation (1 and 5% oxidized) demonstrated a 60% biodegradation, and specimens with highly oxidized starch (90% oxidized) achieved 37% biodegradation.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.Journal Paper J-15927 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Project No. 3258.  相似文献   

20.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号