首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
A highly active electrocatalytic electrode for nitrate reduction was prepared by the electro-deposition of palladium onto a copper electrode. The capacity of nitrate reduction by a palladium-modified copper electrode has been studied using cyclic voltammetry (CV). The existence of a reduction peak at -0.605 V versus saturated calomel electrode in 0.1-M sodium nitrate + 0.1-M perchloric acid solution (pH = 0.86) can be found in the CV measurement. The influence of solution properties, such as pH, nitrate concentration, and other anions in solution, on nitrate reduction was determined in detail. Results showed that nitrate reduction was suppressed in alkaline solution, while it was beneficial to nitrate reduction in acid or neutral solution. At low nitrate concentrations (0.01 to 0.5 M), nitrate reduction current increased with increasing nitrate concentration, but was hindered by sulfate. At high nitrate concentrations (1 to 5 M), no significant difference on nitrate reduction was observed. Compared with other different electrodes prepared in our work (copper, titanium, and palladium-modified titanium electrodes), the palladium-modified copper electrode showed the highest electrocatalytic capacity and stability in the nitrate-reduction process.  相似文献   

2.
以钛基氧化物涂层材料(Ti/SnO2-Sb2O5-IrO2)为阳极,碳纳米管修饰的石墨(GE—CNT)为阴极构建电化学系统进行硝酸根(NO3-)去除研究,考察了阴极材料、阴极电位和pH值对电化学法去除水中NO[的影响,同时检测了铵离子(NH4+)和亚硝酸根(NO2-)的生成量。结果表明,利用碳纳米管修饰的石墨阴极可获得较好的硝态氮去除效果;随着阴极电位负移,NO3-去除率随之升高;酸性条件下NO3-去除率最高,NH;生成量也更多。对于由NO3-转化产生的NH4+,在氯离子存在条件下再次进行电化学处理120min,其去除率可达97.1%。  相似文献   

3.
The electrochemical behavior of new generation fungicide acibenzolar-s-methyl (S-methyl 1,2,3-benzothiadiazole-7-carbothioate, ASM) on the hanging mercury drop electrode (HMDE) was investigated using square wave adsorptive stripping voltammetry. This method of determination is based on the irreversible reduction of ASM at the HMDE. The well-defined ASM peak was observed at ?0.4 V (vs. Ag/AgCl) in BR buffer at pH 2.2. The reduction peak current was proportional to concentration of ASM from 1.0 × 10?8 to 6.0 × 10?8 mol L?1 with detection and quantification limit 3.0 × 10?9 and 1.0 × 10?8 mol L?1, respectively. The applicability of the developed method for analysis of spiked samples of tap water, river water, and soil is illustrated. The effect of adsorption on the mercury electrode was studied in detail using the AC impedance method. Possible interferences with other common pesticides and heavy metal ions were examined. Clarification of the electrode mechanism was made using cyclic voltammetry (CV) technique.  相似文献   

4.
The fate and effect of nanomaterials in the environment is of paramount importance towards the technological application of the materials. This work shows the ecotoxicological potential of polyaniline (PANI) nanofibers in the larvae Rhinella arenarum by means of AMPHITOX test. Acute toxicity of PANI nanofibers towards embryos of the common South American toad R. arenarum (Anura: bufonidae) was evaluated in the premetamorphosis (stage 25) larvae. The exposure of R. arenarum larvae to at dose of 150, 250 and 400 mg L−1 resulted in 100% viability within 96 h exposure. The embryos at 2-4 blastomers stage (early life stage teratogenic test) revealed that embryos were not killed and no teratogenic effects were observed when embryos were incubated with PANI nanofibers (150 and 250 mg L−1), while only a growth retardation of embryos was induced at levels of 250 mg PANI nanofibers L−1. On the other hand, at 400 mg L−1 concentration, a reduction in the body length of larvae and tail malformation was observed. This results suggest that a concentration-dependent toxicity is operative, typified by phenotypes that had abnormal body axes. The presence of PANI nanofibers in gut contents and its excretion by larval stages of R. arenarum was confirmed by UV-visible spectroscopy.  相似文献   

5.
Rengaraj S  Li XZ 《Chemosphere》2007,66(5):930-938
A series of Bi(3+)-doped TiO(2) (Bi(3+)-TiO(2)) catalysts with a doping concentration up to 2wt% were prepared by a sol-gel method. The prepared photocatalysts were characterized by different means to determine their chemical composition, surface structure and light absorption properties. The photocatalytic activity of different Bi(3+)-TiO(2) catalysts was evaluated in the photocatalytic reduction of nitrate in aqueous solution under UV illumination. In the experiments, formic acid was used as a hole scavenger to enhance the photocatalytic reduction reaction. The experiments demonstrated that nitrate was effectively degraded in aqueous Bi(3+)-TiO(2) suspension by more than 83% within 150min, while the pH of the solution increased from 3.19 to 5.83 due to the consumption of formic acid. The experimental results indicate that the presence of Bi(3+) in TiO(2) catalysts substantially enhances the photocatalytic reaction of nitrate reduction. It was found that the optimal dosage of 1.5wt% Bi(3+) in TiO(2) achieved the fastest reaction of nitrate reduction under the experimental condition. Bismuth ions deposit on the TiO(2) surface behaves as sites where electrons accumulate. Better separation of electrons and holes on the modified TiO(2) surface allows more efficient channeling of the charge carriers into useful reduction and oxidation reactions rather than recombination reactions. Two intermediate products of nitrite and ammonia during the reaction were also monitored to explore the possible mechanisms of photoluminescence quenching and photocatalytic reduction in the context of donor-acceptor interaction with electron trapping centers.  相似文献   

6.
Huang YH  Zhang TC 《Chemosphere》2006,64(6):937-943
Batch tests were conducted to investigate nitrite reduction in a zerovalent iron (Fe0) system under various conditions. Nitrite at 1.4 mM initial concentration was slowly reduced to nitrogen gas in the first stage (days 1-6), which was mediated by an amorphous, Fe(II)-rich iron oxide coating. The second stage (days 7-14) featured a rapid reduction of nitrite to both ammonia and nitrogen gas and the formation of a more crystalline, magnetite form iron oxide coating. Water reduction by Fe0 occurred concurrently with nitrite reduction from the beginning and contributed significantly to the overall iron corrosion. Nitrite at 14 mM was found to passivate the surface of Fe0 grains with respect to nitrite reduction. Adding aqueous Fe2+ significantly accelerated reduction of nitrite by Fe0 to nitrogen gas with lepidocrocite as the main iron corrosion product. Substantially, though still substoichiometrically, 0.55 mol of Fe2+ were concomitantly consumed per 1.0 mol nitrite reduction, indicating that Fe0 was the main electron source. In the presence of Fe2+, nitrite reduction out-competed water reduction in terms of contributing to the overall iron corrosion. Results of this study help understand complicated interactions between water reduction and nitrite reduction, the roles of surface-bound Fe2+, and the evolution of the iron corrosion coating.  相似文献   

7.
Jeong JY  Kim HK  Kim JH  Park JY 《Chemosphere》2012,89(2):172-178
The present study investigates the performance of the zero valent iron (ZVI, Fe0) packed bed bipolar electrolytic cell for nitrate removal. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous column experiments for the simulated groundwater (initial nitrate and electrical conductivity of about 30 mg L−1 as N and 300 μS cm−1, respectively), above 99% of nitrate was removed at the applied potential of 600 V with the main anode placed on the bottom of reactor. The influx nitrate was converted to ammonia (20% to maximum 60%) and nitrite (always less than 0.5 mg L−1 as N in the effluent). The optimum packing ratio (v/v) of silica sand to ZVI was found to be 1:1-2:1. Magnetite was observed on the surface of the used ZVI as corrosion product. The reduction at the lower part of the reactor in acidic condition and adsorption at the upper part of the reactor in alkaline condition are the major mechanism of nitrate removal.  相似文献   

8.
A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04?M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= ?0.851 and ?0.938?V vs. Ag/AgCl (3.0?M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8?×?10?6?M with a detection limit of 1.53?×?10?8?M (S/N=?3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.  相似文献   

9.
采用电沉积法制备铈修饰的PbO2/C电极,通过SEM、XRD、XPS及循环伏安对PbO2/C、Ce-PbO2/C电极进行表征,结果表明,Ce-PbO2/C电极比PbO2/C颗粒细小,表面均匀致密,电化学氧化能力较强,修饰电极中Ce以CeO2的形态存在。以Ce-PbO2/C为工作电极,电解浓度为1 000 mg/L的高盐酸性红B模拟活性染料废水,考察了电压、pH、电解质浓度、极间距对脱色率、氨氮去除率及COD去除率的影响。确定适宜工艺条件为:初始酸性红B溶液浓度为1 000 mg/L,pH值为6,电压10 V,电解时间1 h,电极间距1.5 cm,该条件下脱色率、氨氮去除率和COD去除率分别为99.98%、97.23%和90.17%。通过UV-Vis及GC-MS初步分析了降解过程可能存在的中间产物及降解途径。  相似文献   

10.
新型的脱氮工艺--SHARON工艺   总被引:2,自引:0,他引:2  
SHARON是一种用来处理高浓度、低碳氮比含氨废水的新型脱氮工艺。该工艺根据亚硝酸菌和硝酸菌的不同生长条件,通过控制反应器的水力停留时间和pH,使亚硝酸菌成为反应器的优势菌属,从而将氨氮的氧化控制在亚硝化阶段,随后再进行反硝化。与传统脱氮工艺相比,SHARON工艺具有流程简单、脱氮速率快、投资和运行费用低等优点。  相似文献   

11.
Cations (pH, potassium, sodium, calcium, magnesium, and ammonium) and anions (sulfate, nitrate, nitrite, and chloride) concentrations were measured in Santiago city rain and dew waters collected during the 1995 to 1999. Concentrations measured in dews are considerably higher than those measured in rains. The high ionic concentration present in dew waters could contribute to their corrosion potential. Natural dust makes an important contribution to the ions present in dews, but the presence of rather high sulfate concentrations (up to 900 μeq/l) indicate a significant contribution of anthropogenic sources.A peculiar characteristic of dew waters is the relatively high nitrite concentrations (up to 180 μeq/l). This nitrite can be resuspended into the boundary layer after dew water evaporation, possibly due to the relatively high volatily of ammonium nitrite. This upward flux could constitute an important source of hydroxyl radicals in the early morning, contributing so to the initial steps of the observed photochemical smog.  相似文献   

12.
固定化氧化还原介体加速亚硝酸盐生物反硝化作用   总被引:4,自引:0,他引:4  
考察了利用循环伏安法所制备的固定化氧化还原介体(AQS/PPy/ACF)加速亚硝酸盐生物反硝化的特性,及其降解过程中pH和氧化还原电位(ORP)的变化特征。结果表明,AQS/PPy/ACF可显著地加速亚硝酸盐的生物降解;在不考虑各因子间交互作用的条件下,AQS/PPy/ACF加速亚硝酸盐降解的最佳条件为温度35℃,pH=8和碳氮比为6;AQS/PPy/ACF加速亚硝酸盐生物反硝化过程中pH的变化趋势与传统的亚硝酸盐生物反硝化过程中pH的变化趋势相似;AQS/PPy/ACF的加入可使亚硝酸盐生物反硝化过程中的ORP降低约45 mV;AQS/PPy/ACF具有较好的催化稳定性。本研究可为亚硝酸盐的生物降解提供新的技术途径,并为该技术的实际应用提供理论基础。  相似文献   

13.
研究了低温条件下,沸石和火山岩为载体,锯末为碳源的生物反应器对地下水中硝酸盐氮的去除效果。结果表明,在(14±1)℃,水力停留时间18 h,进水硝酸盐氮浓度为27 mg/L的条件下,以锯末为碳源能有效去除地下水中的硝酸盐,沸石为载体时对硝酸盐氮的平均去除率为98%;火山岩为载体时对硝酸盐氮的平均去除率为95%。实验过程中出现铵盐和亚硝酸盐的积累,出水中氨氮浓度为1~2.55 mg/L,亚硝酸氮浓度为0~0.98 mg/L。出水pH均介于7~8,满足饮用水标准中pH的要求(6.5~8.5)。  相似文献   

14.
本研究从水产养殖环境中分离出39株反硝化细菌,并从中筛选出具有较强反硝化能力的菌株DB-33,对其脱氮能力测定的结果表明,在培养基中亚硝酸盐氮浓度高达54.16mg/L,硝酸盐氮浓度高达306.91mg/L时,DB-33菌株对其去除率均达99%以上,且在去除过程中氨氮不累积;在模拟养殖水体中,DB-33可将亚硝酸盐氮和硝酸盐氮分别在24h和第3天彻底去除,对氨氮48h的去除率也可达51.52%。通过形态学特性和生理生化分析以及16SrDNA基因序列分析,菌株DB-33初步鉴定为施氏假单胞菌(Pseudomonasstutzeri)。  相似文献   

15.
Beitz T  Bechmann W  Mitzner R 《Chemosphere》1999,38(2):351-361
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.  相似文献   

16.
A carbon paste electrode modified with p-chloranil and carbon nanotubes was used for the sensitive and selective voltammetric determination of hydroxylamine (HX) and phenol (PL). The oxidation of HX at the modified electrode was investigated by cyclic voltammetry (CV), chronoamperommetry, and electrochemical impedance spectroscopy. The values of the catalytic rate constant (k), and diffusion coefficient (D) for HX were calculated. Square wave voltammetric peaks current of HX and PL increased linearly with their concentrations at the ranges of 0.1–172.0 and 5.0–512.0 μmol L?1, respectively. The detection limits for HX and PL were 0.08 and 2.0 μmol L?1, respectively. The separation of the anodic peak potentials of HX and PL reached to 0.65 V, using square wave voltammetry. The proposed sensor was successfully applied for the determination of HX and PL in water and wastewater samples.  相似文献   

17.
采用电沉积法制备铈修饰的PbO2/C电极,通过SEM、XRD、XPS及循环伏安对PbO2/C、Ce-PbO2/C电极进行表征,结果表明,Ce-PbO2/C电极比PbO2/C颗粒细小,表面均匀致密,电化学氧化能力较强,修饰电极中Ce以CeO2的形态存在。以Ce-PbO2/C为工作电极,电解浓度为1 000 mg/L的高盐酸性红B模拟活性染料废水,考察了电压、pH、电解质浓度、极间距对脱色率、氨氮去除率及COD去除率的影响。确定适宜工艺条件为:初始酸性红B溶液浓度为1 000 mg/L,pH值为6,电压10 V,电解时间1 h,电极间距1.5 cm,该条件下脱色率、氨氮去除率和COD去除率分别为99.98%、97.23%和90.17%。通过UV-Vis及GC-MS初步分析了降解过程可能存在的中间产物及降解途径。  相似文献   

18.
Environmental Science and Pollution Research - Online sensors, which monitor the ammonia oxidation and the dissimilatory nitrate reduction process, can optimize aerobic and anoxic phase duration....  相似文献   

19.
Malouki MA  Lavédrine B  Richard C 《Chemosphere》2005,60(11):1523-1529
The influence of nitrate and nitrite ions on the degradation of methabenzthiazuron upon irradiation using artificial solar light has been investigated. The rate of degradation of methabenzthiazuron (1 microM) was accelerated by NO3- (0.1 mM) by a factor of 10. The irradiation of methabenzthiazuron (0.1 mM) in the presence of NO3- (1 mM) or NO2- (0.1 mM) yielded numerous intermediary photoproducts. Mineralization was achieved after prolonged exposure. Some were identified with the help of LC-ESI-MS and flow injection APCI-MS techniques. Both oxidations of the aromatic ring and of the urea chain were observed. The former started by hydroxylation of the ring. Further oxidation of the ring led to cleavage of the benzenic ring with formation of dialdehydic, diacidic and anhydric compounds. Complete removal of the lateral urea chain took place subsequently to demethylation of the terminal methyl group and loss of the CO-NH2 group. Nitration was a minor process. This work shows that the photodegradation of methabenzthiazuron in the presence of nitrate or nitrite ions is highly non-specific.  相似文献   

20.
In this study, we report preparation of a high sensitive electrochemical sensor for determination of hydrazine in the presence of phenol in water and wastewater samples. In the first step, we describe synthesis and characterization of ZnO/CNTs nanocomposite with different methods such as transmission electron microscopy (TEM) and X-ray diffraction (XRD). In the second step, application of the synthesis nanocomposite describes the preparation of carbon paste electrode modified with n-(4-hydroxyphenyl)-3,5-dinitrobenzamide as a high sensitive and selective voltammetric sensor for determination of hydrazine and phenol in water and wastewater samples. The mediated oxidation of hydrazine at the modified electrode was investigated by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy (EIS). Also, the values of catalytic rate constant (k) and diffusion coefficient (D) for hydrazine were calculated. Square wave voltammetry (SWV) of hydrazine at the modified electrode exhibited two linear dynamic ranges with a detection limit (3σ) of 8.0 nmol L?1. SWV was used for simultaneous determination of hydrazine and phenol at the modified electrode and quantitation of hydrazine and phenol in some real samples by the standard addition method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号