首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超声-Fenton法处理偶氮染料橙黄II的研究   总被引:1,自引:0,他引:1  
以偶氮染料橙黄II为研究对象 ,考察了Fenton反应在超声辐射条件下 ,pH值、H2 O2 浓度、Fe2 + 离子浓度对COD去除率的影响。实验结果表明 ,超声对Fenton试剂处理偶氮染料橙黄II具有强化作用。超声条件下 ,当染料浓度为10 0mg/L、pH为 3.0、Fe2 + 离子浓度为 10mg/L、H2 O2 浓度为 4 0 0mg/L时 ,反应 90min ,COD去除率最高可达 93%。  相似文献   

2.
以旋转填充床(RPB)作为反应装置,研究了Fenton工艺与Fenton+O3工艺处理模拟阿莫西林废水的效果,考察了FeSO4·7H2O的投加量、温度、旋转床转速、液体流量及pH对C0D去除率的影响。实验表明,Fenton+O3工艺的COD脱除率及BOD5/COD相对于Fenton工艺分别提升26.7%和140%。该工艺在pH为3、温度为25℃、液体流量30L/h、气体流量2.5L/h、转速800r/min、H2O2的投加量为1mmol/L及Fe2+投加量为0.4mm01/L的条件下,100mg/L的模拟阿莫西林废水中COD的去除率达到57.9%,BOD5/COD从0增加到0.36,满足后续生化处理要求。  相似文献   

3.
In this paper, a comparison of various advanced oxidation processes (O3, O3/UV, H2O2/UV, O3/H2O2/UV, Fe2+/H2O2) and chemical treatment methods using Al2(SO4)3.18H2O, FeCl3 and FeSO4 for the chemical oxygen demand (COD) and color removal from a polyester and acetate fiber dyeing effluent is undertaken. Advanced oxidation processes (AOPs) showed a superior performance compared to conventional chemical treatment, which maximum achievable color and COD removal for the textile effluent used in this study was 50% and 60%, respectively. Although O3/H2O2/UV combination among other AOPs methods studied in this paper was found to give the best result (99% removal for COD and 96% removal for color), use of Fe2+/H2O2 seems to show a satisfactory COD and color removal performance and to be economically more viable choice for the acetate and polyester fiber dyeing effluent on the basis of 90% removal.  相似文献   

4.
Photo-oxidation of cork manufacturing wastewater   总被引:7,自引:0,他引:7  
Several photo-activated processes have been investigated for oxidation of a cork manufacturing wastewater. A comparative activity study is made between different homogeneous (H2O2/UV-Vis and H2O2/Fe2+/UV-Vis) and heterogeneous (TiO2/UV-Vis and TiO2/H2O2/UV-Vis) systems, with degradation performances being evaluated in terms of total organic carbon (TOC) removal. Results obtained in a batch photo-reactor show that photo-catalysis with TiO2 is not suitable for this kind of wastewater while the H2O2/UV-Vis oxidation process, for which the effect of some operating conditions was investigated, allows to remove 39% of TOC after 4 h of operation (for C(H2O2)=0.59 M, pH=10 and T=35 degrees C). The combined photo-activated process, i.e., using both TiO2 and H2O2, yields an overall TOC decrease of 46% (for C(TiO2)=1.0 gl(-1)). The photo-Fenton process proved to be the most efficient, proceeds at a much higher oxidation rate and allows to achieve 66% mineralization in just 10 min of reaction time (for C(H2O2)=0.31 M, T=30 degrees C, Fe2+:H2O2=0.12 (mol) and pH=3.2).  相似文献   

5.
研究了微曝气Fenton氧化法关键工艺参数对模拟双酚A(BPA)废水处理效果的影响,并从活性污泥性质和污染物去除率两方面,采用膜生物反应器(membrane bioreactor, MBR)对微曝气Fenton氧化法的处理效果进行了实验验证,为实现BPA废水的生物处理奠定基础。结果表明,初始pH值、反应时间、H2O2/COD(质量浓度比)、H2O2/Fe2+ (摩尔浓度比)、反应温度及曝气量均对预处理效果有较大影响,在最佳条件下,COD去除率可达70%,BOD/COD值则由原废水的0.02提高到0.50以上。MBR处理上述出水的结果表明,经微曝气Fenton氧化处理BPA的废水,可较好地适应后续的生化处理。  相似文献   

6.
Zhao X  Zhang B  Liu H  Chen F  Li A  Qu J 《Chemosphere》2012,87(6):631-636
The treatment of the plugboard wastewater was performed by an optimal electrocoagulation and electro-Fenton. The organic components with suspended fractions accounting for 30% COD were preferably removed via electrocoagulation at initial 5 min. In contrast, the removal efficiency was increased to 76% with the addition of H(2)O(2). The electrogenerated Fe(2+) reacts with H(2)O(2) and leads to the generation of (·)OH, which is responsible for the higher COD removal. However, overdosage H(2)O(2) will consume (·)OH generated in the electro-Fenton process and lead to the low COD removal. The COD removal efficiency decreased with the increased pH. The concentration of Fe(2+) ions was dependent on the solution pH, H(2)O(2) dosage and current density. The changes of organic characteristics in coagulation and oxidation process were differenced and evaluated using gel permeation chromatography, fluorescence excitation-emission scans and Fourier transform infrared spectroscopy. The fraction of the wastewater with aromatic structure and large molecular weight was decomposed into aliphatic structure and small molecular weight fraction in the electro-Fenton process.  相似文献   

7.
Fenton's pre-treatment of mature landfill leachate   总被引:20,自引:0,他引:20  
Lopez A  Pagano M  Volpe A  Di Pinto AC 《Chemosphere》2004,54(7):1005-1010
The aim of this study was to check the effectiveness of the Fenton's reagent (Fe2+ + H2O2 + H+) for the pre-treatment of a municipal landfill leachate with the objective of improving its overall biodegradability, evaluated in terms of BOD5/COD ratio, up to a value compatible with biological treatment. The leachate came from a municipal sanitary landfill located in southern Italy and the average values of its main parameters were: pH=8.2; COD=10,540 mgl(-1); BOD5=2,300 mgl(-1); TOC=3,900 mgl(-1); NH4-N=5210 mgl(-1); conductivity=45,350 microScm(-1); alkalinity=21,470 mgl(-1) CaCO3. The effect of initial pH value on the pre-treatment effectiveness was evaluated by titrating the amount of acidic by-products formed. The extent of leachate oxidation was monitored and controlled by both pH and redox potential measurements. The best operational conditions for achieving the desired goal (i.e., BOD5/COD> or =0.5) resulted: Fe2+=275 mgl(-1); H2O2=3,300 mgl(-1); initial pH=3; reaction time=2 h. At the end of the Fenton's pre-treatment, in order to permit a subsequent biological treatment, residual ferric ions were removed increasing the pH up to 8.5 by adding 3 gl(-1) of Ca(OH)2 and 3 mgl(-1) of a cationic polyelectrolyte, the latter as an aid to coagulation. This final step also resulted in a further modest removal of residual COD due to co-precipitation phenomena.  相似文献   

8.
O3氧化工艺处理黄连素制药废水研究   总被引:1,自引:0,他引:1  
采用臭氧(O3)氧化法处理含高浓度黄连素和COD的制药废水,探讨了废水初始pH、O3投加量及初始黄连素浓度等因素对O3氧化过程的影响,确定了O3氧化技术处理黄连素制药废水的最佳操作条件。结果表明,O3能够有效分解废水中的黄连素,降低其COD浓度;黄连素浓度为700mg/L、COD为3500mg/L、pH为0.88的废水,进气O3浓度为14.05mg/(L·min),处理时间为180rain(即投加量为2529mg/L)时,黄连素和COD的降解率分别可达77.46%和41.28%,BOD,/COD比(B/C比)从0.06提高到0.34,增加了4.7倍;随着废水中初始黄连素浓度的升高,废水COD降解率逐渐降低。O3氧化法是一种有效的黄连素制药废水预处理技术,可以大大提高废水的可生化性。  相似文献   

9.
电催化氧化法处理染料废水的影响因素及动力学   总被引:1,自引:0,他引:1  
以钛涂膜极板为阳极、石墨极板为阴极、Fe2O3/γ-Al2O3为多相催化剂,构建电-多相催化氧化体系,研究了该体系对酸性大红模拟染料废水中COD的去除效果及其影响因素,优化了实验条件,并初步探讨了COD的降解机理。结果表明,在槽电压20 V,pH 4,曝气量0.24 m3/h,极板间距3 cm的条件下,COD的去除率最高,达到64.5%;COD的降解近似符合一级动力学方程:ln(C0/C)=0.0034t+0.719。在电-多相催化氧化体系中,废水中的有机物被直接矿化或降解为小分子有机物。  相似文献   

10.
In this study, the photochemical degradation of livestock wastewater was carried out by the Fenton and Photo-Fenton processes. The effects of pH, reaction time, the molar ratio of Fe(2 +)/H(2)O(2), and the Fe(2 +) dose were studied. The optimal conditions for the Fenton and Photo-Fenton processes were found to be at a pH of 4 and 5, an Fe(2 +) dose of 0.066 M and 0.01 M, a concentration of hydrogen peroxide of 0.2 M and 0.1 M, and a molar ratio (Fe(2 +)/H(2)O(2)) of 0.33 and 0.1, respectively. The optimal reaction times in the Fenton and Photo-Fenton processes were 60 min and 80 min, respectively. Under the optimal conditions of the Fenton and Photo-Fenton processes, the chemical oxygen demand (COD), color, and fecal coliform removal efficiencies were approximately 70--79, 70--85 and 96.0--99.4%, respectively.  相似文献   

11.
Catalkaya EC  Kargi F 《Chemosphere》2007,69(3):485-492
Advanced oxidation of diuron in aqueous solution by Fenton's reagent using FeSO(4) as source of Fe(II) was investigated in the absence of light. Effects of operating parameters namely the concentrations of pesticide (diuron), H(2)O(2) and Fe(II) on oxidation of diuron was investigated by using Box-Behnken statistical experiment design and the surface response analysis. Diuron oxidation by the Fenton reagent was evaluated by determining the total organic carbon (TOC), diuron, and adsorbable organic halogen (AOX) removals. Concentration ranges of the reagents resulting in the highest level of diuron oxidation were determined. Diuron removal increased with increasing H(2)O(2) and Fe(II) concentrations up to a certain level. Diuron concentration had a more profound effect than H(2)O(2) and Fe(II) in removal of diuron, TOC and AOX from the aqueous solution. Nearly complete (98.5%) disappearance of diuron was achieved after 15min reaction period. However, only 58% of diuron was mineralized after 240min under optimal operating conditions indicating formation of some intermediate products. Optimal H(2)O(2)/Fe(II)/diuron ratio resulting in the maximum diuron removal (98.5%) was found to be 302/38/20 (mgl(-1)).  相似文献   

12.
Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation   总被引:21,自引:0,他引:21  
So CM  Cheng MY  Yu JC  Wong PK 《Chemosphere》2002,46(6):905-912
The photocatalytic oxidation (PCO) of a monoazo dye Procion Red MX-5B under various physico-chemical conditions was investigated. Degradation of the dye by PCO was enhanced by augmentation in UV intensity, titanium dioxide and hydrogen peroxide concentrations but was inhibited by increase in initial dye concentration. The PCO process was affected by pH in a peculiar way. In the presence of 100 mg/l of TiO2 and the absence of H2O2, the highest reaction rate was observed when the initial pH was 10. With 500 mg/l of TiO2 and 10 mM of H2O2, the reaction was the fastest at initial pH of 3-5. The optimal conditions for the degradation of the dye, at an UV intensity of 17 mW/cm2, were determined to be: TiO2 concentration, 500 mg/l; initial H2O2 concentration, 10 mM; initial pH, 5.0. Monitoring of TOC loss showed that the dye was mineralized by 90% within 80 min under these conditions. Nevertheless, the persistence of a low level of TOC indicated that mineralization was not complete and dead-end product(s) which was (were) resistant to PCO might have accumulated.  相似文献   

13.
采用O3、H2O2/O3及UV/O3等高级氧化技术(AOPs)对某焦化公司的生化出水进行深度处理,考察了O3与废水的接触时间、溶液pH、反应温度等因素对废水COD去除率的影响,确定出O3氧化反应的最佳工艺参数为:接触时间40min,溶液pH8.5,反应温度25℃,此条件下废水COD及UV254的去除率最高可达47.14%和73.47%;H2O2/O3及UV/O3两种组合工艺对焦化废水COD及UV254的去除率均有一定程度的提高,但H2O2/O3系统的运行效果取决于H2O2的投加量。研究结论表明,单纯采用COD作为评价指标,并不能准确反映出O3系列AOPs对焦化废水中有机污染物的降解作用。  相似文献   

14.
Degradation of dyes in aqueous solutions by the Fenton process   总被引:3,自引:0,他引:3  
Xu XR  Li HB  Wang WH  Gu JD 《Chemosphere》2004,57(7):595-600
Degradation of 20 different dyes in aqueous solutions by the Fenton process was performed. These dyes include 6 types: acidic, reactive, direct, cationic, disperse and vat dyes. The former four types of dyes were decolorized and their TOC values were decreased greatly, while the color and TOC removals of the latter two types were lower. The catalytic activities of four metal ions on the degradation efficiencies of Vat Blue BO, which was chosen as a model dye because of its lowest color and TOC removals, were compared in the dark and under the ultraviolet light irradiation. The catalytic ability of different metals was Fe2+>Cu2+>Mn2+>Ag+ in the dark, and the same sequence was obtained under irradiation condition with greater degradation efficiency. Furthermore, the efficiencies of three oxidation processes, including H2O2/UV, Fe2+/H2O2 and Fe2+/H2O2/UV were compared. The results showed that the oxidation by Fe2+/H2O2/UV was the strongest, and even greater than the arithmetic sum of the other two processes, which suggests the synergistic effect of ultraviolet and ferrous ions on the degradation reaction.  相似文献   

15.
Yu S  Lee B  Lee M  Cho IH  Chang SW 《Chemosphere》2008,71(11):2106-2112
There has been recent growing interest in the presence of antibiotics in different environmental sectors. One considerable concern is the potential development of antibiotic-resistant bacteria in the environment, even at low concentrations. Cefaclor, one of the beta-lactam antibiotics, is widely used as an antibiotic. Kinetic studies were conducted to evaluate the decomposition and mineralization of cefaclor using gamma radiation. Cefaclor, 30 mg/l, was completely degraded with 1,000 Gy of gamma radiation. At a concentration of 30 mg/l, the removal efficiency, represented by the G-value, decreased with increasing accumulated radiation dose. Batch kinetic experiments with initial aqueous concentrations of 8.9, 13.3, 20.0 and 30.0mg/l showed the decomposition of cefaclor using gamma radiation followed a pseudo first-order reaction, and the dose constant increased with lower initial concentrations. At a given radiation dose, the G-values increased with higher initial cefaclor concentrations. The experimental results using methanol and thiourea as radical scavengers indicated that ()OH radicals were more closely associated with the radiolytic decomposition of cefaclor than other radicals, such as e(aq)(-) or ()H. The radical scavenger effects were tested under O(2) and N(2)O saturations for the enhancement of the TOC percentage removal efficiencies in the radiolytic decomposition of cefaclor. Under O(2) saturation, 90% TOC removal was observed with 100,000 Gy. Oxygen is well known to play a considerable role in the degradation of organic substances with effective chain reaction pathways. According to the effective radical reactions, the enhanced TOC percentage removal efficiencies might be based on the fast conversion reactions of e(aq)(-) and ()H with O(2) into oxidizing radicals, such as O(2)(-) and HO(2)(), respectively. 100% TOC removal was obtained with N(2)O gas at 20,000 Gy, as reducing radicals, such as e(aq)(-) and ()H, are scavenged by N(2)O and converted into ()OH radicals, which have strong oxidative properties. The results of this study showed that gamma irradiation was very effective for the removal of cefaclor in aqueous solution. The use of O(2) or N(2)O, with radiation, shows promise as effective radical scavengers for enhancing the TOC or COD removal efficiencies in pharmaceutical wastewaters containing antibiotics. However, the biological toxicity and interactions between various chemicals during the radiolytic treatment, as well as treatments under conditions more representative of real wastewater will require further studies.  相似文献   

16.
Enhanced chemical oxidation of aromatic hydrocarbons in soil systems   总被引:5,自引:0,他引:5  
Kang N  Hua I 《Chemosphere》2005,61(7):909-922
Fenton's destruction of benzene, toluene, ethylbenzene, and xylene (BTEX) was investigated in soil slurry batch reactors. The purpose of the investigation was to quantify the enhancement of oxidation rates and efficiency by varying process conditions such as iron catalyst (Fe(II) or Fe(III); 2, 5, and 10mM), hydrogen peroxide (H2O2; 30, 150, 300 mM), and metal chelating agents (l-ascorbic acid, gallic acid, or N-(2-hydroxyethyl)iminodiacetic acid). Rapid contaminant mass destruction (97% after 3h) occurred in the presence of 300 mM H2O2 and 10 mM Fe(III). An enhanced removal rate (>90% removal after 15 min and 95% removal after 3h) was also observed by combining Fe(III), N-(2-hydroxyethyl)iminodiacetic acid and 300 mM H2O2. The observed BTEX mass removal rate constants (3.6-7.8 x 10(-4)s(-1)) were compared to the estimated rate constants (4.1-10.1 x 10(-3)s(-1)). The influence of non-specific oxidants loss (by reaction with iron hydroxides and soil organic matter) was also explored.  相似文献   

17.
Brillas E  Casado J 《Chemosphere》2002,47(3):241-248
The degradation of 10-30 l of a 1000 ppm aniline solution in 0.050 M Na2SO4 + H2SO4 at pH 3.0 and 40 degrees C by Electro-Fenton and peroxi-coagulation processes at constant current until 20 A has been studied using a pilot flow reactor in recirculation mode with a filter-press cell containing an anode and an oxygen diffusion cathode, both of 100 cm2 area. H2O2 is produced by the two-electron reduction of O2 at the cathode, being accumulated with a current efficiency between 60% and 80% at the first stages of electrolyses performed with a Ti/Pt anode. In the presence of 1 mM Fe2+, less H2O2 is accumulated, but it is not detected using an Fe anode. The Electro-Fenton process with 1 mM Fe2+ and a Ti/Pt or DSA anode yields an insoluble violet polymer, while the soluble total organic carbon (TOC) is gradually removed, reaching 61% degradation after 2 h at 20 A. In this treatment, pollutants are preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe2+ with H2O2. The peroxi-coagulation process with an Fe anode has higher degradation power, allowing to remove more than 95% of pollutants at 20 A, since some intermediates coagulate with the Fe(OH)3 precipitate formed. Both advanced electrochemical oxidation processes (AEOPs) show moderate energy costs, which increase with increasing electrolysis time and applied current.  相似文献   

18.
加热酸化-Fenton氧化处理乳化液废水   总被引:1,自引:0,他引:1  
采用加热酸化-Fenton氧化处理乳化液废水,在加酸量为1.0mL98%H2SO4/100mL乳化液、加热温度95℃、加热时间1h条件下,初始COD〉20万mg/L,浊度〉8000NTU的乳化液COD降低到46592mg/L,浊度降低到20NTU,加热和酸化的联合过程达到了良好的破乳效果;破乳后的出水在ρ(Fe2+)/ρ(H2O2)=1:30、ρ(H2O2)和(COD)=1.4、pH=4的条件下进行Fenton氧化,处理后的出水COD可降到18600mg/L,去除率达61.4%,其B/C可由破乳后的0.11提高到0.43,废水的可生化性大大提高,为后续处理创造了可能。  相似文献   

19.
Degradation rates and removal efficiencies of Metronidazole using UV, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied in de-ionized water. The four different oxidation processes were compared for the removal kinetics of the antimicrobial pharmaceutical Metronidazole. It was found that the degradation of Metronidazole by UV and UV/H2O2 exhibited pseudo-first order reaction kinetics. By applying H2O2/Fe2+, and UV/H2O2/Fe2+ the degradation kinetics followed a second order behavior. The quantum yields for direct photolysis, measured at 254 nm and 200-400 nm, were 0.0033 and 0.0080 mol E(-1), respectively. Increasing the concentrations of hydrogen peroxide promoted the oxidation rate by UV/ H2O2. Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The major advantages and disadvantages of each process and the complexity of comparing the various advanced oxidation processes on an equal basis are discussed.  相似文献   

20.
UV-Fenton体系预处理四氢呋喃废水实验研究   总被引:1,自引:0,他引:1  
采用UV-Fenton体系预处理四氢呋喃废水,实验结果表明,pH值、反应时间、Fe2+和H2O2投加量等因素对处理效果有较大的影响。实验确定的最佳反应条件为:原水pH=5,Fe2+投加量2.5 mmol/L,H2O2投加量12 mmol/L,反应时间90 min,连续曝气,在此条件下,COD去除率可达85%左右。经UV-Fenton体系处理后,废水的B/C值由0.16增至0.47,可生化性提高,可满足后续生化处理的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号