首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《灾害学》2021,(3)
基于国际耦合模式比较计划第五阶段(CMIP5)中5个气候模式的日降水数据,采用广义极值分布对年最大5 d累积降水数据进行拟合,预估了RCP4.5和RCP8.5两种情景下不同重现期极端降水事件的分布及其变化;并结合Meijer等人整合的中国道路里程数据,在0.5°×0.5°栅格尺度上对中国道路系统对极端降水事件暴露度的时空格局进行分析。研究结果表明:(1)中国年最大5 d累积降水呈现明显的上升趋势,且RCP8.5情景下的增速在2040年之后明显高于RCP4.5情景下的增速。(2)2080年之前,各重现期极端降水事件的影响面积在两情景下随时间不断增加,但之后,RCP4.5情景下增加速度趋于缓和甚至开始下降。(3)道路系统对极端降水的高暴露度地区随时间逐步从我国东南沿海地区向西北地区扩张;至2080—2099年,中国极端降水道路系统暴露度在RCP4.5和RCP8.5两种情景下较2020—2039年分别增加了1.31和1.54倍。  相似文献   

2.
极端高温灾害严重,在未来很有可能会加剧。研究基于NEX-GDDP高时空分辨率降尺度数据及历史观测数据,将35℃作为极端高温阈值,对当前及未来不同情景下夏玉米生育期(6-9月)极端高温时空分布特征进行分析。结果显示:在各个时期、各情景下山东省日最高气温空间上都呈现出东部沿海较低向西部内陆地区逐渐升高的趋势,随时间逐渐增高,在RCP8.5排放情景下增加更显著,且西部地区较东部沿海地区增加幅度大;极端高温日数同样呈现增加的趋势,特别在未来远期RCP8.5排放情景下增加迅速,超过50%地区达到80d以上。NEX-GDDP数据具有较好的应用效果,未来极端高温灾害频发,夏玉米生产将面临严重威胁。  相似文献   

3.
依托中国逐日雪深模拟预估数据集、草地生产力数据、气象站点数据、灾害统计资料以及统计年鉴,选取了历史基准时段(1986—2005年)、未来近期(2016—2035年)和未来远期(2046—2065年)三个时间段,以及RCP4.5和RCP8.5两种情景,分析了青藏高原牧区雪灾危险性、牧区牲畜暴露量以及脆弱性,在此基础上,定量预估了青藏高原畜牧业雪灾风险。结果表明:(1)青藏高原区域内,中国逐日雪深模拟预估数据中,CESM1-BGC模式模拟的积雪深度数据更接近于站点雪深观测值,模拟精度最高,此次研究选用该模式下雪深数据识别雪灾危险性。雪灾危险性从时序看,相比于历史时期,RCP4.5情景下未来近期、未来远期和RCP8.5情景下未来近期、未来远期发生雪灾危险性的范围减少6%、11%、6%和14%;但是雪灾危险性强度减弱并不明显,RCP4.5情景下,未来远期,甚至增强;空间分布来看,危险性指数较高的区域主要分布在藏北高原、冈底斯山脉沿线、昆仑山脉西段沿线、祁连山脉沿线、三江源区域和横断山脉山脉区域。(2)与2000年青藏高原牧区草地载畜量相比,2017年载畜量增加11%,未来载畜量将可能进一步增加...  相似文献   

4.
汲欣愉  黄弘 《灾害学》2023,(1):177-185
基于NEX-GDDP数据集,采用气候倾向率法、Mann-Kendall突变检验和小波分析法对北京市2006—2099年极端降水时序变化特征进行分析。结果表明:在RCP4.5和RCP8.5情景下,本世纪内北京地区极端降水呈现增加趋势,世纪末期有较大幅度增加,RCP8.5情景下极端降水增加程度更大。在RCP4.5情景下,年降水量、大雨日数、SDII等多数极端降水指数在2040年前后发生增加突变,而在RCP8.5情景下极端降水表现出更为稳定的上升趋势。极端降水事件在RCP4.5和RCP8.5情景下的主周期均为56年,在该特征尺度下各指标呈现少→多→少→多→少的循环交替,RCP8.5情景下降水量、降水频率和降水强度震荡更加明显。  相似文献   

5.
《灾害学》2020,(2)
采用国际耦合模式比较计划第五阶段(CMIP5)中20个气候模式的试验数据,以及OpenStreetMap的中国公路数据,采用极值分布对年最高气温进行拟合,预估2030年和2050年RCP4.5和RCP8.5两种情景下不同重现期的极端高温分布及其变化,分析极端高温下中国公路网暴露度的时空格局,并对不同阈值下的暴露度敏感性进行分析。研究表明:①中国极端高温呈明显上升趋势,2050年与2030年的中国极端高温空间分布差异将大于2030年与2015年的差异,且RCP8.5与RCP4.5情景的差异随着时间的增长不断扩大;②相比于基准时间(2015年),中国公路对极端高温的暴露度无论在何种情景都将增长,且增速随着时间增大;③不同高温影响阈值下的公路暴露度具有显著空间分布差异;④公路暴露热点区域范围将由华北向南逐渐扩张,由数个小区域逐渐融合为一个大区域,公路暴露度东部区域较西部区域严重,京津冀地区暴露度尤其高。  相似文献   

6.
基于宁夏地区22个气象站1971-2011年月降水量和月平均气温资料,综合考虑降水和蒸发,引入标准化降水蒸散指数(SPEI),分析该地区气象干旱变化情况,并在此基础上通过构建SPEI值与干旱等级的加权综合评价模型,评估该地区干旱致灾危险性,剖析其时空变化特征。结果表明:宁夏地区气象干旱呈显著加重趋势,年均SPEI值1972-2011年以0.37·(10a)-1的速率显著减小;该地区气象干旱呈现自南向北逐渐加重的空间分布格局,且干旱加重速度呈现由中部干旱带向南北分别递增的空间变化特征。1972-2011年,宁夏地区干旱致灾危险性呈显著增大趋势,干旱致灾危险性指数近40年减小速率为0.12·(10a)-1;该地区干旱致灾危险性在空间分布上表现为北部引黄灌区高于中南部地区,且危险性的增速呈现中部较缓、南北较快的空间变化特征。  相似文献   

7.
长江中下游地区21世纪气候变化情景预测   总被引:18,自引:0,他引:18  
利用IPCC数据分发中心提供的7个模式的模拟结果,分析了由于人类活动影响,温室气体(GG)增加以及温室气体和硫化物气溶胶(GS)共同增加时,长江中下游地区未来50~100年的气候变化情景.结果表明,长江中下游地区21世纪的未来温度变化与全球和全国一样,都将呈增加的趋势.GG作用下,2050年和2100年长江中下游地区的变暖幅度分别为2.2℃和4.5℃左右,比全国以及东部和西部地区的变暖幅度小;GS作用下2050年和2100年,其分别为1.2℃和3.9℃,总体上,长江中下游地区的变暖幅度低于全球与全国的变暖幅度.各个季节相比,春季和冬季的增温幅度最大,夏季最小,在两种情形下,长江中下游地区21世纪中期夏季温度将分别增加2.3和0.8℃,2100年将分别增加4.1和3.1℃.对降水变化的分析表明,GG作用下,长江中下游地区与全球、全国以及中国西部和东部地区相比,降水增加的幅度最大;GS作用下,降水增加趋势不明显;综合7个模式的模拟结果,GG作用下,春季和秋季降水增加最明显,夏季次之;GS作用下,长江中下游地区的年平均降水变化不明显,夏季降水增加.同时,本文还对长江中下游地区21世纪中期和末期的温度和降水变化的地理分布进行了分析,两种情形下,都是长江以北的增温幅度大于长江以南.GG作用下,春季长江中下游地区21世纪中期降水将增加5%~7.5%,夏季则是长江下游地区降水增加较大,将增加10%,而长江中游地区降水增加不明显;21世纪末,春季和夏季长江中下游地区的降水增加幅度都将加大,尤其是长江以南地区的降水增加最明显;考虑GG和GS的共同影响后,长江以南的地区降水增加,长江以北地区降水减少.  相似文献   

8.
通过美国国家环境预报中心NCEP再分析资料和泾河流域10个气象站的历史降水及蒸发资料,采用逐步回归法建立了降水、蒸发统计降尺度模型,利用TOPMODEL模型模拟了未来时期的径流量,分析了泾河流域未来的径流变化趋势。模拟结果表明:基于逐步回归法的降尺度模型与TOPMODEL模型的结合能较好地分析未来径流变化;未来时期的降水量和蒸发量呈现增大趋势;在RCP4.5情景下,年径流呈现先增大后减少再增大的趋势。在RCP8.5情景下,年径流呈现增大的趋势。  相似文献   

9.
致灾因子是灾害风险分析理论体系中的重要组成部分,干旱致灾因子危险性指数由干旱强度和发生概率共同决定。基于致灾因子危险性指数计算模式,对比分析了宁夏中南部山区降水距平百分率和标准化降水指数两种常用干旱指标在致灾因子危险性中的应用。分析结果表明,基于两种干旱指标的宁夏中南部山区干旱致灾因子危险性分布趋势一致,且均与实际相符,考虑到计算的简单易行,可以选择降水距平百分率作为宁夏干旱致灾因子危险性指数分析的依据。从全区干旱灾害风险区划的分析表明,宁夏干旱致灾因子危险性大致呈由南到北逐步增加的趋势。  相似文献   

10.
中国高温致灾危险性时空格局预估   总被引:8,自引:0,他引:8  
应用PRECIS模式模拟的气候情景数据,选取高温日数和热浪日数两个指标,对IPCC SRESB2情景下未来我国高温致灾危险性时空格局进行了预估。结果表明:在近期(2011-2040)、中期(2041-2070)和远期(2071-2100),全国年均高温日数从基准时段(1961-1990)的10.2d将分别增加到17.3d,22.6d和28.4d,年均热浪日数从基准时段的11.5d分别增加到22.6d,30.6d和39.0d;除了青藏高原,全国大部分地区的高温致灾危险性等级均有不同程度的提高,其中高温致灾危险性等级高于4级(包括4级)的地区在基准时段仅占全国总面积的3.8%,在近期、中期和远期将分别扩展到全国总面积的29.9%,51.3%和63.0%。  相似文献   

11.
利用吉林省1961-2015年46个气象站的逐日气象数据,结合Penman-Monteith方程,计算玉米生育期逐旬需水量(Et_c)、降水量以及作物水分亏缺指数(CWDI),根据干旱等级指标计算逐旬不同等级干旱频率、平均干旱强度以及干旱风险指数,并分析其空间分布和时间变化特征。结果表明:从玉米生长季水分供需状况看,西部地区整个玉米生长季水分亏缺最严重,玉米易遭受干旱威胁,中部发生干旱的威胁次于西部地区,东部发生干旱的威胁最小。西部地区干旱发生频率最高,其次是中部,东部地区干旱发生频率最低,平均干旱强度和干旱风险指数与此有相同的分布特征。各等级干旱基本上是在玉米生长的前期和后期发生频率较高,而在玉米生长的关键期,发生频率相对较小。除个别情况,各时段基本是轻旱发生频率最高,其次是中旱,而重旱发生频率较低,特旱发生频率最低。代表站各时段水分亏缺指数年际变化基本是中前期呈减少趋势,中后期呈增加趋势。不同时段各等级风险区空间分布也存在差异。  相似文献   

12.
近40a黄淮海地区夏玉米生长季干旱时空特征分析   总被引:2,自引:0,他引:2  
干旱是制约黄淮海地区夏玉米产量稳定的主要农业气象灾害,明确粮食主产区农业干旱发生的演变规律,对于采取有效的防灾减灾对策意义重大。基于作物水分亏缺指数和夏玉米干旱等级指标,分析了黄淮海地区近40a夏玉米生长季干旱的时空变化规律。结果表明:夏玉米各生育阶段间比较,播种-出苗期水分亏缺指数和干旱发生概率最大。除播种-出苗期外,随着干旱等级的升高,干旱发生概率逐渐降低,但播种-出苗期则以特旱等级发生概率最大;各阶段水分亏缺指数无明显的时间变化趋势,但年际间波动较大,特别是夏玉米生长中后期,1997年是近40a干旱发生最为严重的年份,不仅干旱持续时间长,且发生范围也最大;水分亏缺指数空间分布范围在年代际间存在"缩小-增大-缩小"的变化规律,从各年代干旱等级及其分布范围看,1991-2000年干旱最严重,2001-2010年有所减轻。夏玉米各阶段水分亏缺指数及各等级干旱发生概率基本呈现为由东南向西北逐渐增大的变化趋势,河北大部、河南西部和北部以及山东的中西部地区是各阶段干旱概率的高值区。由于年际间的波动在增大,黄淮海地区夏玉米生长中后期极端干旱灾害发生的可能性较大,北部及西部地区更是干旱灾害的高发区,生产中仍需加强对干旱灾害的预测预报及防御工作。  相似文献   

13.
利用区域气候模式PRECIS单向嵌套Hadley气候中心海-气耦合模式HadCM3高分辨率的大气部分HadAM3P,分别进行了气候基准时段(1961—1990年)和2080 s时段(2071—2100年)中国区域各30年时间长度的模拟试验,以分析PRECIS对当代中国区域极端降水事件的模拟能力和SRES B2情景下2080s时段相对于气候基准时段中国区域极端降水事件的可能变化趋势。气候基准时段模拟结果与观测值的对比分析表明:PRECIS能够较好地模拟出中国区域年平均极端降水事件的空间分布特征,但模式模拟的大雨事件和湿日数高值区范围较观测值偏大,对华南地区暴雨事件和日最大降水事件的模拟结果较观测值偏低。SRES B2情景下,2080s时段年平均大雨事件除东北和华南地区外,全国均呈增多趋势。暴雨事件在西部地区以减少为主,而东部地区主要呈增加趋势。年平均日最大降水事件的分布型与大雨事件基本一致。湿日数除华北、西北和青藏高原部分地区外均呈减少趋势。未来长江流域洪涝灾害事件发生的频率将可能增大。  相似文献   

14.
孔锋  孙劭 《灾害学》2021,(4):107-112
采用SSPs情景下BCC-CSM2-MR模式输出的2015-2100年的全球日值降水数据,基于采用超阈值取样方法和韦伯分布理论,计算了全球陆地极端降水的阈值和强度的空间差异特征。结果表明:①不同SSPs情景下全球陆地的极端降水阈值空间分布具有相似性,且差异较大的地区主要分布在中纬度地区。其中SSP1-2.6情景下的阈值与SSP2-4.5、SSP3-7.0和SSP5-8.5情景的空间相关系数分别达到了0.73、0.71、0.70和0.69(n=16 941),均通过了0.01显著性水平的检验。②不同SSPs情景下的全球陆地极端降水强度空间分布具有相似性,仅在强度和面积上有所差异,呈现出区域和次区域特征。同一SSP情景下的全球陆地极端降水强度之间的空间相关系数,随着重现期的增加而减小。③SSP5-8.5与SSP1-2.6情景下的全球陆地极端降水强度差异在热带和季风区主要以正差异为主,其分布面积和强度随着年遇型增加而增加。  相似文献   

15.
承灾体的暴露度水平是影响灾害风险和损失的重要因素之一,基于历史热带气旋风场、降水、风暴潮和海浪四类致灾因子的网格数据计算重现期表达致灾因子危险性,以沿海县为研究单元,分析1980—2015年中国沿海10 km范围的土地利用、人口密度和GDP的变化。基于危险性变化和海岸线变化,研究1980—2015年中国沿海10 km范围的土地利用、人口密度和GDP在不同危险性等级下暴露度水平的变化。研究表明:中国沿海地区热带气旋灾害危险性总体上风雨综合危险性大于潮浪综合危险性;1980—2015年中国沿海地区热带气旋灾害暴露度水平在时间范围上呈逐年上升的趋势,且承灾体受热带气旋大风、降水的影响大于受风暴潮、海浪的影响;中国沿海地区热带气旋致灾因子危险性在0.99置信水平下除了广东省南部沿海地区海浪危险性有上升趋势,海南省南部沿海地区海浪危险性有下降趋势,其余地区没有显著的变化趋势。由于总体危险性变化趋势不明显,因而承灾体量的变化是暴露度水平变化的关键,也是造成中国沿海地区因热带气旋损失增加的原因之一。  相似文献   

16.
基于GIS的重庆地区不同季节干旱灾害风险评估与区划   总被引:1,自引:0,他引:1  
依据自然灾害风险评估理论,从致灾因子危险性、孕灾环境脆弱性、承灾体暴露性、防灾减灾能力4个方面选取指标,构建重庆干旱灾害风险评估模型,结合相关气象、生态和社会经济数据,运用GIS空间数据分析完成重庆不同季节干旱灾害风险评估及区划。结果表明:(1)重庆各类干旱致灾因子危险性均表现在重庆西北部和东北部偏东地区较高,其中东北部的巫溪均为高危险区,而重庆东南部和中部偏北地区的危险性较低。(2)干旱孕灾环境脆弱性的高脆弱区主要位于重庆东北部的城口、巫溪、巫山、奉节和西南部的綦江、南川、武隆、丰都、石柱,而西部和东南部的彭水、黔江、秀山大部地区脆弱性较低。(3)干旱承灾体暴露性在东南部的彭水、黔江、秀山大部地区较低,而在东北部、中部和西南部大部地区为高暴露区。(4)干旱灾害防灾减灾能力在主城区及涪陵、万州城区周边为次高和高能力区,而重庆东北部和东南部大部地区为低能力区。(5)重庆不同干旱灾害风险在东北偏东地区的风险性均较高,其中巫溪均为高风险区,而东南部和中部偏北地区的风险性较低。  相似文献   

17.
《灾害学》2019,(1)
在地球工程对中国极端降雨致灾因子危险性影响的研究基础上,采用BNU-ESM模式的地球工程(G4试验)和非地球工程(RCP4. 5)日值降雨数据,以日均值降雨量的95%分位数定义极端降雨事件。同时结合IPCC SSP3情景下的中国分省人口数据,评估了中国极端降雨灾害受影响人口风险,并对两种情景下的风险进行对比分析。结果表明:地球工程能够有效降低中国整体极端降雨灾害受影响人口风险,且实施期间的降低作用高于实施结束期。两种情景下中国极端降雨灾害受影响人口风险的区域差异增大,地球工程未能改变中国极端降雨灾害受影响人口风险的相对格局,表明在当前Geo MIP模式设定的地球工程实施当量下,人类能够有效降低气候变化风险,且不影响区域气候相对格局。  相似文献   

18.
《灾害学》2019,(Z1)
泥石流在我国西部地区分布广泛,类型多样,成灾方式多且危害严重,对我国山区公路建设与发展带来严重威胁。公路泥石流工程防治原则和模式不仅与公路工程特性有关,还与泥石流活动特征密切相关,而泥石流活动特征可采用危险性高低来衡量。结合公路泥石流活动特点和公路等级安全要求,提出基于危险性的公路泥石流工程防治原则,并在总结分析我国西部山区公路和铁路的泥石流防治经验基础上,探讨不同防治分类下公路泥石流防治模式,用以指导泥石流地区公路勘察设计与施工维护。  相似文献   

19.
《灾害学》2019,(1)
依据灾害概率风险评估理论,考虑汛期降水的可预报性,基于历史洪涝灾害事件,尝试性地构建了年度洪涝灾害风险评估模型,以湖南为例,对评估模型进行了检验与应用。结果表明:模型建立了前期海温和环流指数等因子与汛期区域降水时空分布的回归预报方程,应用概率风险分析得到年度不同降水下直接经济损失分布,结合蒙特卡洛仿真模拟求解损失的超越概率曲线,评估年度洪涝灾害单次最大可能损失、年度总损失以及年期望损失;模型集"未来年度汛期降水预测"、"降水与损失分布关系拟合"、"损失超越概率评估"于一体,是对全过程年度洪涝灾害风险评估方法的新探索;湖南年度洪涝灾害评估案例表明该模型可操作,结果与实际情况相符。研究可为完善灾害风险评估内容与技术方法提供新视角,亦可为开展业务实践提供方法借鉴。  相似文献   

20.
基于标准化降水蒸散指数的华南干旱趋势研究   总被引:11,自引:0,他引:11  
最近几年华南地区干旱频发,为探讨该地区的干旱趋势,用标准化降水蒸散指数(SPEI)和1961-2010年华南地区具有代表性的50个站点的月降水及月平均气温资料,分析了该地区近50年来的干旱趋势、干旱空间分布、极端干旱事件发生频次和干旱持续时间。结果表明,华南地区普遍存在干旱事实,最近10年是干旱最严重的10年,Mann-Kendall检验表明该地区平均SPEI指数从1998年开始突变;干旱化最严重的区域是海南岛、广西南部和西部地区,广东的干旱化趋势最轻。20世纪70年代干旱和极端干旱事件较少,其后明显增多,干旱持续时间也有所延长。由于该地区降水呈现弱增加趋势而温度升高显著,因此推测温度升高导致蒸散增加可能是华南地区干旱化的主要原因。另外,降水频次的减少和集中也是导致近来极端干旱事件增多的原因之一。SPEI指数较好地体现了气候变暖导致的干旱化趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号