首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
从某水厂的生物除锰滤池中分离出1株新的高效锰氧化菌,命名为H1.通过生理生化及16S rDNA序列对比分析鉴定为氨基杆菌(Aminobacter sp.),国内外未曾有对该菌株具有锰氧化能力的相关报道.本文对Aminobacter sp.H1的微生物特性、锰氧化机制及生成的生物氧化锰的性质进行了研究.结果表明,Aminobacter sp.H1的锰耐受浓度高达50 mmol·L-1,可完全去除浓度低于10 mmol·L-1的Mn(Ⅱ).菌株H1对Mn(Ⅱ)的氧化主要是通过产生锰氧化活性因子和碱性代谢产物提高pH两个因素共同作用的结果,活性因子细胞内合成后分泌到细胞外起作用.氧化过程中发现有Mn(Ⅲ)中间体出现,XRD、XPS、SEM-EDX等分析菌株H1介导生成的生物氧化锰发现,生物氧化锰与菌体结合紧密,弱结晶、无固定形态,成分主要为MnCO3、MnOOH、Mn3O4和MnO2等.  相似文献   

2.
锰作为一种常见的无机污染物,难以从环境中除去.本研究采用选择性培养基从锰矿土壤中分离到1株高效锰氧化细菌Arthrobacter sp.HW-16.此外,高通量测序发现,不同驯化条件下微生物群落结构有明显差异,且Arthrobacter在含Mn(Ⅱ)培养基里为优势菌属.本文对Arthrobacter sp.HW-16的微生物特性和锰氧化机制进行了初步的研究.结果表明,菌株HW-16的Mn(Ⅱ)耐受质量浓度高达5 000 mg·L~(-1),菌株HW-16在3 000 mg·L~(-1)Mn(Ⅱ)培养基里取得最大Mn(Ⅱ)氧化率为66.28%.单因素变量实验表明环境因子影响菌株HW-16的生长和Mn(Ⅱ)氧化率.菌株HW-16在30℃,pH 7.0,1%或3%盐度,200 r·min-1下生长得最好.高温(≥40℃),高pH(≥7),高转速和低盐度条件下Mn(Ⅱ)氧化率高.菌株HW-16通过合成锰氧化活性因子促使Mn(Ⅱ)氧化和产生碱性代谢产物促使Mn(Ⅱ)转化为沉淀.  相似文献   

3.
生物氧化锰矿物对几种重金属的吸附作用   总被引:1,自引:0,他引:1  
从土壤铁锰结核及其附近土壤中分离、培养并筛选到3株锰氧化细菌:芽孢杆菌(Bacillus sp.)WH4和GY16,假单胞菌(Pseudomonas sp.)WHS26,应用这3个菌株大量合成了生物氧化锰.在此基础上,比较研究了这3个菌株催化合成的生物氧化锰与一种化学合成锰氧化物矿物(S-MnOx:Synthesized Mn oxide)对重金属Cu2+、Zn2+、Cd2+的吸附特征.结果表明,3种生物氧化锰对重金属的吸附具有明显优势,其对Cu2+、Zn2+、Cd2+的最大吸附量约为S-MnO2的10~100倍;各种氧化锰对Cu2+、Zn2+、Cd2+的吸附过程均符合Langmuir等温吸附模型,且是一个快速吸附的过程;3种锰氧化物对Cu2+、Zn2+、Cd2+3种重金属的最大吸附量与其比表面积呈正相关,吸附过程受pH影响,最适的pH范围为3~6.  相似文献   

4.
采用分离纯化的方法从锰矿企业含锰土壤中筛选分离能够耐受并氧化二价锰离子(Mn(Ⅱ))的真菌,并研究分离菌株的生长特性及对Mn(Ⅱ)的氧化能力。共分离得到4株具有耐受Mn(Ⅱ)的真菌菌株,分别为XS2-1,XS2-2,XS3-2-4,XS3-2-5。其中XS2-2,XS3-2-4,XS3-2-5能够将Mn(Ⅱ)氧化生成锰氧化物(Mn(Ⅲ,Ⅳ))。根据ITS(Internal Transcribed Spacer)rRNA基因测序结果,这4株真菌菌株分别属于Cladosporium、Plectosphaerella、Epicuccum和Phaeosphaeriopsis属。考察了pH值以及Mn(Ⅱ)浓度对菌株生长和氧化Mn(Ⅱ)能力的影响。发现这4株真菌菌株的生长受pH值影响较小,但受Mn(Ⅱ)浓度影响较大;菌株的Mn(Ⅱ)氧化能力受pH值和Mn(Ⅱ)浓度的影响均较为显著。菌株XS3-2-5的Mn(Ⅱ)氧化能力最为突出,随着Mn(Ⅱ)浓度的增加(最高至15 000μmol/L),其Mn(Ⅱ)氧化能力不断升高,并未出现不耐受的情况。能够氧化Mn(Ⅱ)的真菌菌种的发现对于治理受锰污染的水及土壤具有潜在的实际意义。  相似文献   

5.
该研究以一株从锰污染土壤中筛选、分离得到的具有高Mn(Ⅱ)耐受性并具有氧化Mn(Ⅱ)的特性的真菌菌株XS3-2-5为对象,考察了p H值和Mn(Ⅱ)初始浓度对该菌株生长及其氧化Mn(Ⅱ)能力的影响,并结合扫描电镜(SEM)、透射电镜(TEM)、X射线能量色散谱(EDS)、X射线光电子能谱(XPS)等方法,对经过菌株XS3-2-5氧化后的生物锰氧化物进行了表征。ITS(internal transcribed spacer)r RNA基因测序结果表明,该菌株属于Phaeosphaeriopsis sp。pH和Mn(Ⅱ)初始浓度对该菌株的生长速度无显著影响。该菌株(湿重)在p H 5~7范围内对Mn(Ⅱ)(300μmol/L)的氧化率接近200 mg/g。SEM、TEM、EDS和XPS的分析结果表明,Mn(Ⅱ)经过该菌株氧化后的生物锰氧化物主要为二氧化锰。  相似文献   

6.
微生物参与形成的锰氧化物是环境中一种高活性的锰氧化物.研究表明,锰氧化菌主要通过分泌多铜氧化酶来氧化Mn(Ⅱ)而形成锰氧化物.微生物形成锰氧化物过程的主要初级产物是与δ-MnO2或与酸性钠水锰矿类似的层状锰酸盐.生物氧化锰是环境中重要的吸附剂、氧化剂和催化剂.通过吸附、氧化作用,生物氧化锰影响着重金属离子在环境中的迁移转化,在重金属元素生物地球化学循环中起重要作用.研究锰氧化物的生物形成过程、生物氧化锰的结构特征及其与重金属离子之间的相互作用,对于了解生物氧化锰在重金属元素生物地球化学循环过程中的作用以及在重金属污染修复中的应用有着重要意义.本文综述了环境中生物氧化锰的形成机制、性质、结构特点及其吸附、氧化重金属离子的机制.  相似文献   

7.
利用从土壤铁锰结核中分离筛选得到的1株锰氧化细菌(芽孢杆菌,Bacillus sp.)GY16合成生物氧化锰,与化学合成的水钠锰矿进行比较,研究了不同氧化锰对As的氧化吸附特征.结果表明,生物氧化锰和化学氧化锰对As(Ⅲ)均有强烈的氧化作用,化学氧化锰对As(Ⅲ)的氧化速率要高于生物氧化锰,而单位物质的量的生物氧化锰对As(Ⅲ)的氧化量可达化学氧化锰的5倍,并且对As(Ⅴ)有非常明显的吸附作用,而化学氧化锰对As(Ⅴ)的吸附量则非常少.此外,随着生物氧化锰与As(Ⅲ)/As(Ⅴ)反应的进行,生物氧化锰对As(Ⅲ)/As(Ⅴ)的氧化吸附速率均逐渐降低.随着pH的增加,生物氧化锰对As(Ⅲ)的氧化量及As(Ⅴ)的吸附量均呈现出明显的下降趋势,但是化学氧化锰对As(Ⅴ)的吸附量却有微弱的增加.研究结果可为生物氧化锰应用于环境修复提供可靠的技术支撑.  相似文献   

8.
滤池被广泛运用于饮用水厂中,前期研究发现某水厂生物滤池处理含砷地下水时,一方面三价砷可被生物氧化锰氧化为五价砷,另一方面滤池系统中存在的微生物砷还原酶可促使五价砷还原为三价砷,而滤池表面存在的这种微生物竞争关系会影响滤池的稳定性及处理效率.为探讨其内在机制,本研究选取1株锰氧化模式菌(Pseudomonas sp.QJX-1)和1株砷还原模式菌(Brevibacterium sp.LSJ-9),考察在Mn2+、As(As3+、As5+)共存时,两菌株对空间、营养物质以及对砷氧化/还原的竞争关系.结果表明,不同的反应时间,Mn、As质量浓度/价态不同,三价及五价砷体系中,Pseudomonas sp.QJX-1生成的锰氧化物在砷的氧化还原反应中占主导地位,即能迅速氧化本身存在的As3+(三价砷体系)和砷还原菌产生的As3+(五价砷体系),最终两体系中砷都主要以As5+的形式存在.PCR及RT-PCR结果表明,反应过程中锰氧化菌功能基因(cum A)抑制了砷还原酶(ars C)的表达,锰氧化菌16S rRNA表达量始终比砷还原菌高两个数量级,即锰氧化菌在生长竞争过程中占优势.实验结果表明滤池的水力停留时间是决定出水中砷价态的一个重要因素.  相似文献   

9.
Pseudomonas sp. QJX-1的锰氧化特性研究   总被引:2,自引:2,他引:0  
从锰矿土壤样品中分离、纯化出1株高效锰氧化细菌(QJX-1),经16S rDNA序列鉴定为Pseudomonas sp.QJX-1.研究表明,Pseudomonas sp.QJX-1含有锰氧化的必需成分多铜氧化酶基因CumA,当初始Mn2+为5.05 mg·L-1,菌密度D600为0.020时,该菌可在48 h内将Mn2+转化,且转化率高达99.4%.在寡营养条件下该菌锰氧化速率较富营养条件下有显著提高;添加石英砂滤料促使生物膜的快速形成,进而促进Mn2+的生物转化.根据研究结果推测地下水处理过程中生物锰氧化速率较快.  相似文献   

10.
水锰矿氧化水溶性硫化物过程及其影响因素   总被引:1,自引:1,他引:0  
罗瑶  李珊  谭文峰  刘凡  蔡崇法  邱国红 《环境科学》2016,37(4):1539-1545
作为表生环境中易生成且分布广泛的氧化锰矿物,水锰矿参与水溶性硫化物的氧化反应,影响其迁移、转化和归趋.本研究考察了水锰矿氧化水溶性硫化物(S~(2-))的过程与产物,探讨了初始pH、氧气对反应速率与中间产物的影响,X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和透射电镜(TEM)表征水锰矿与水溶性硫化物反应固相产物晶体结构、组分和微观形貌;分光光度计、高效液相色谱仪和离子色谱仪分析S~(2-)及其氧化物的浓度与变化趋势.结果表明水锰矿氧化S~(2-)产物主要为单质S,起始pH降低可加速S~(2-)的初始氧化反应,对产物组成并无显著影响;有氧环境中单质S会进一步氧化生成S_2O_3~(2-),且水锰矿表现出良好的催化作用与化学稳定性,反应约10 h,晶体结构保持稳定.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

20.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号