首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
塑料污染已是全球防治环境污染的重大问题,我国每年有大量的废旧塑料产生,仅废旧塑料的分选这一工艺就要耗费大量的人力物力财力,回收后的循环再利用,又要增加昂贵的处理成本。综述了废旧塑料几种主要的分选技术,包括色彩分选技术、光谱分选技术、密度分选技术、风力分选技术、静电分选技术、溶剂萃取分选技术。对废旧塑料化学回收循环利用相关技术进行介绍,包括热裂解法、催化裂解法、氢化裂解法、光催化裂解法等。总结了对废旧塑料分选及化学回收循环再利用的重要性,并对此提出了规模化、产业化的发展愿景。  相似文献   

2.
介绍了当前国内外几种处理和利用废旧塑料的方法,特别对废旧塑料掩埋、再生、回收、焚烧、热裂解制造燃料油和化学品的技术和存在的问题作了重点探讨.  相似文献   

3.
废塑料催化裂解制燃料油   总被引:3,自引:0,他引:3  
用自制的L不列催化剂对聚乙烯,聚丙烯,聚苯乙烯及其按不同比例混合的3种废塑料催化裂解制燃料油进行了研究。试验结果表明:混合废塑料料经过催化解制得的90^#汽油和0^#柴油的质量均达到国家标准。油品品质的好坏主要由废塑料的种类,催化剂和催化改质温度3个因素决定。  相似文献   

4.
粉煤灰催化热裂解聚丙烯废塑料   总被引:1,自引:1,他引:0  
在自制的废塑料催化热裂解装置和液体蒸馏装置上,研究了聚丙烯(PP)在粉煤灰催化作用下的热裂解特性。实验结果表明:随粉煤灰与PP的质量比增加,液体产物收率下降、气体产物收率增加,产物更加趋向于轻质化;残渣收率先降低后增加,但残渣收率总体偏低,不超过3%;液体产物中的汽油馏分收率先增加后下降,热裂解温度为460℃、粉煤灰与PP的质量比为0.2时汽油馏分收率为40.4%,热裂解温度为440℃、粉煤灰与PP的质量比为0.3时汽油馏分收率为37.9%;柴油馏分收率变化不明显;重油馏分收率下降,但当粉煤灰与PP的质量比超过0.3以后,重油馏分收率下降不再明显。  相似文献   

5.
为了对废聚苯乙烯泡沫塑料(WPS)资源化利用,通过对WPS进行催化裂解的方法,研究了催化剂种类和裂解温度对裂解时间、裂解油产率、苯乙烯回收率以及裂解油纯度的影响。研究结果表明,催化剂种类和裂解温度对裂解反应有着重要影响。裂解温度升高,裂解油产率提高,裂解时间缩短,但苯乙烯选择性下降;低于380 ℃时,氧化钙的裂解油产率和裂解时间优于氧化铝和氯化铝,但苯乙烯的选择性劣于氧化铝和氯化铝;高于400 ℃时,氯化铝、氧化铝和氧化钙的催化活性接近。在实验条件下,WPS催化裂解的最佳催化剂为氯化铝,380 ℃下的裂解时间为25 min,裂解油产率为85.48%,裂解油中苯乙烯含量为80.66%(w),且副产物较少。  相似文献   

6.
考察了废旧塑料生产汽油、柴油的工厂及生产情况,结合几年的试验开发,设计了一套以中小城市废弃塑料为原料,采用溶剂预热溶化,管式炉加热,自动循环排渣裂解炉,采用自制高效催化剂,生产汽油、柴油新工艺生产线。该生产线造价16.5万元/套,年处理150吨废塑料,年产100吨汽油、柴油,年利税15万元,适合城郊乡镇小企业。  相似文献   

7.
唐立光 《化工环保》1989,9(4):219-225,247
本文介绍废塑料裂解过程的反应,裂解反应器的类型及几家公司和大学等所开发的废塑料裂解工艺过程。  相似文献   

8.
废旧塑料的处理和利用   总被引:17,自引:0,他引:17  
韩建多  杨春光 《化工环保》1994,14(5):274-280
介绍了几种处理和利用废旧塑料的方法:再生法、热分解法、焚烧法,并着重介绍了热分解法。采用热分解法处理废旧塑料。既可以减轻环境污染,又可以回收油品,具有一定的现实意义。文中还对有关部门提出了回收利用废旧塑料的具体建议。  相似文献   

9.
改性Y沸石催化降解聚苯乙烯的研究   总被引:1,自引:0,他引:1  
陈平  孙永康 《化工环保》2004,24(3):172-175
用热重分析方法研究了HY沸石与改性Y沸石(UHY)作为催化降解聚苯乙烯的催化剂对聚苯乙烯催化降解的作用及影响,对聚苯乙烯的催化降解与热降解反应产物进行了比较。结果表明,催化剂的存在能显著地降低聚苯乙烯的降解温度,催化剂的酸量和孔结构对聚苯乙烯的降解温度、活化能、积炭的生成量及裂解产物有很大的影响。  相似文献   

10.
日本石川岛播磨重工业公司最近宣布,公司已开发成功将PE、PP等废旧塑料转化为石化原料的工艺.利用这项技术可将废PE、PP塑料制品用催化剂将其裂解为苯、甲苯、二甲苯的混合物和氢.  相似文献   

11.
废塑料生产汽柴油技术分析与应用中的误区   总被引:2,自引:0,他引:2  
赵志海 《化工环保》2002,22(5):268-270
从废塑料生产汽柴油技术的工艺流程入手,对该项技术中存在的一些问题进行了分析,内容涉及原料来源及范围,裂化反应条件,传热与除焦,油品质量及收率,新形成的污染和经济效益评估等;指出了此项技术在应用中存在的误区。  相似文献   

12.
Catalytic cracking of high-density polyethylene (HDPE) over fluid catalytic cracking (FCC) catalysts (1:6 ratio) was carried out using a laboratory fluidized bed reactor operating at 450 degrees C. Two fresh and two steam deactivated commercial FCC catalysts with different levels of rare earth oxide (REO) were compared as well as two used FCC catalysts (E-Cats) with different levels of metal poisoning. Also, inert microspheres (MS3) were used as a fluidizing agent to compare with thermal cracking process at BP pilot plant at Grangemouth, Scotland, which used sand as its fluidizing agent. The results of HDPE degradation in terms of yield of volatile hydrocarbon product are fresh FCC catalysts>steamed FCC catalysts approximately used FCC catalysts. The thermal cracking process using MS3 showed that at 450 degrees C, the product distribution gave 46 wt% wax, 14% hydrocarbon gases, 8% gasoline, 0.1% coke and 32% nonvolatile product. In general, the product yields from HDPE cracking showed that the level of metal contamination (nickel and vanadium) did not affect the product stream generated from polymer cracking. This study gives promising results as an alternative technique for the cracking and recycling of polymer waste.  相似文献   

13.
This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.  相似文献   

14.
Fuel production from plastics is a promising way to reduce landfilling rates while obtaining valuable products. The usage of Ni-supported hierarchical Beta zeolite (h-Beta) for the hydroreforming of the oils coming from LDPE thermal cracking has proved to produce high selectivities to gasoline and diesel fuels (>80%). In the present work, the effect of the Ni loading on Ni/h-Beta is investigated in the hydroreforming of the oils form LDPE thermal cracking. h-Beta samples were impregnated with Ni nitrate, calcined and reduced in H2 up to 550 °C to achieve different Ni contents: 1.5%, 4%, 7% and 10%. Larger and more easily reducible metal particles were obtained on Ni 7%/h-Beta and Ni 10%/h-Beta. Hydroreforming tests were carried out in autoclave reactor at 310 °C, under 20 bar H2, for 45 min. Ni content progressively increased the amount of gases at the expenses of diesel fractions, while gasoline remained approximately constant about 52–54%. Maximum selectivity to automotive fuels (~81%) was obtained with Ni 7%/h-Beta. Ni loading also enhanced olefins saturation up to Ni 7%/h-Beta. High cetane indices (71–86) and octane numbers (89–91) were obtained over all the catalysts. Regarding the different studied Ni contents, Ni 7%/h-Beta constitutes a rather promising catalyst for obtaining high quality fuels from LDPE thermal cracking oils.  相似文献   

15.
The aim of this study was to investigate the possibilities of using a by-product (red mud) from alumina production as a catalyst for recovery of waste. The conversion of waste mineral oil (WMO) and waste mineral oil/municipal waste plastic (WMO/MWP) blends over red mud (RM), a commercial hydrocracking catalyst (silica–alumina), and a commercial hydrotreating catalyst (Ni–Mo/alumina) to fuel has been studied. The effect of the catalyst and the temperature on the product distribution (gas, liquid, and wax) and the properties of liquid products were investigated. In the case of hydrotreatment of WMO, the liquids obtained over RM at both 400° and 425°C had larger amounts of low-boiling hydrocarbons than that of thermal or catalytic treatment with hydrotreating catalyst. Gas chromatography and nuclear magnetic resonance analysis of the liquid products showed that RM had hydrogenation and cracking activity in hydrotreatment of WMO. In coprocessing of WMO with municipal waste plastics, temperature had an important effect as well as the amount of MWP in the blend and the catalyst type. The hydrocracking at 400°C produced no liquid product. In hydrocracking at 425°C, the product distribution varied with catalyst type and MWP amount. The commercial hydrocracking catalyst had more cracking ability in the conversion of WMO/MWP to liquid and gas fuel than RM. In the case of hydrocracking over RM, the largest amount of liquid having satisfactory quality was obtained only from the blend containing 20% MWP.  相似文献   

16.
The thermal cracking at 400?°C of pure polyolefins—low density polyethylene (LDPE), high density polyethylene (HDPE) and polypropylene (PP) and a standard polyolefin mixture (46?% LDPE?+?27?% HDPE?+?28?% PP)—was studied together with the catalytic hydroreforming of the obtained oils over Ni/h-beta at 310?°C under 20?bar of hydrogen. The oils obtained after the thermal cracking of PP contain the highest amount of gasoline (58?%), while those coming from HDPE the lowest (39?%). The bromine index of the oils was very high, ranging from 54.1 (LDPE) to 83.8 (PP), indicating a high olefinic content of the oils. Additionally, the thermal cracking of the mixture indicates the occurrence of a synergestic effect among plastics, with transfer of methyl groups from PP to polyethylenes. Ni/h-beta (Si/Al?=?25; Ni content?=?6.2?wt%) catalyst was used in the hydroreforming since it contains a bimodal pore size distribution (0.6/3.1?nm), which improves accessibility of the oil molecules to the catalytic sites. After the hydroreforming and regardless of the plastics used, the share of lighter products (gasoline and gases) increases, reaching a remarkable 68?% of gasolines with the oils coming from PP. Regardless of the starting feed, the amount of useful fuels (gasoline?+?light diesel) was within 80–85?%. Additionally, the oils were successfully hydrogenated since the bromine indexes dropped below 7, indicating that more than 90?% of the starting olefins were saturated. The usage of catalysts increased the amount of aromatics in the obtained oils within 13–20?%, depending on the starting plastic. Likewise, the isoparaffin content of the gasolines was within 35–40?%, except for PP, where it was enhanced to 62?%. However, the research octane number (RON) of the gasolines from LDPE and PP and the cetane indexes of the diesel from all the plastics were promising for their application as fuels.  相似文献   

17.
Waste plastics contain a substantial number of valuable chemicals. The wastes from post-consumer as well as from industrial production can be recycled to valuable chemical feedstock, which can be used in refineries and/or petrochemical industries. This chemical recycling process is an ideal approach in recycling the waste for a better environment. Polymer cracking using a laboratory fluidised bed reactor concentrated on the used highly contaminated catalyst, E-Cat 2. Even though E-Cat 2 had low activity due to fewer acid sites, the products yielded were similar with amorphous ASA and were far better than thermal cracking. The high levels of heavy metals, namely nickel and vanadium, deposited during their lifetime as an FCC catalyst, did not greatly affect on the catalyst activity. It was also shown that E-Cat 2 could be used with and without regeneration. Although there was more deactivation when there was no regeneration step, the yield of gases (C2-C7) remained fairly constant. For the first time, these results indicate that “waste” FCC catalyst (E-Cat) is a good candidate for future feedstock recycling of polymer waste. The major benefits of using E-Cat are a low market price, the ability to tolerate reuse and regeneration capacity.  相似文献   

18.
Advanced thermal treatment technologies utilizing pyrolysis or gasification, as well as a combined approach, are introduced as sustainable methods to treat wastes in Singapore. Eight different technologies are evaluated: pyrolysis–gasification of MSW; pyrolysis of MSW; thermal cracking gasification of granulated MSW; combined pyrolysis, gasification and oxidation of MSW; steam gasification of wood; circulating fluidized bed (CFB) gasification of organic wastes; gasification of RDF; and the gasification of tyres.Life cycle assessment is carried out to determine the environmental impacts of the various waste conversion systems including global warming potential, acidification potential, terrestrial eutrophication and ozone photochemical formation. The normalization and weighting results, calculated according to Singapore national emission inventories, showed that the two highest impacts are from thermal cracking gasification of granulated MSW and the gasification of RDF; and the least are from the steam gasification of wood and the pyrolysis–gasification of MSW.A simplified life cycle cost comparison showed that the two most costs-effective waste conversion systems are the CFB gasification of organic waste and the combined pyrolysis, gasification and oxidation of MSW. The least favorable – highest environmental impact as well as highest costs – are the thermal cracking gasification of granulated MSW and the gasification of tyres.  相似文献   

19.
用铁泥制氧化铁红   总被引:8,自引:0,他引:8  
周苏闽  王红艳 《化工环保》1999,19(6):357-360
研究了以染化厂废料铁泥和工业废硫酸为原料,采用高温干法制取氧化铁红的工艺,简要介绍了该法生产氧化铁红的反应机理,探讨了氧化剂,氧化时间,氧化温度等对产品质量的影响,确定了适宜工艺条件,提出了工业生产流程和尾气治理方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号