首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is estimated that approximately 6,000,000 scrap TVs and 10,000,000 personal computers are generated each year in China. Cathode ray tubes (CRTs) from these machines consist of 85% glass (65% panel, 30% funnel and 5% neck glass). The leaded glass (funnel-24%, neck-30%) may seriously pollute the environment if it is not properly disposed of. In this paper, the past, current and future status of CRT dismantling technologies as well as the CRT glass recycling situation in China are presented and discussed. Recycling technology for waste CRTs in China is still immature. While the conventional CRT dismantling technologies have disadvantages from both economic and environmental viewpoints, some of the new and emerging treatments such as automatic optical sorting facilities that have been applied in developed countries offer advantages, and therefore should be transferred to China in the next few years to solve the CRT pre-processing problem. Meanwhile, because the demand for CRT glass closed-loop recycling is extremely limited, the authorities should take effective measures to improve CRT glass recycling rates and to facilitate a match to local conditions. Moreover, we also provide a broad review of the research developments in recycling techniques for CRT cullet. The challenge for the future is to transfer these environmentally friendly and energy-saving technologies into practice.  相似文献   

2.
We compared the environmental burdens in the management of end-of life cathode ray tubes (CRTs) within two frameworks according to the different technologies of the production of televisions/monitors. In the first case, CRT recycling is addressed to the recovery of the panel and funnel glass for the manufacturing of new CRT screens. In the second case, where flat screen technology has replaced that of CRT, the recycling is addressed to the recovery of the glass cullet and lead for other applications. The impacts were evaluated according to the problem-oriented methodology of the Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands. Our data confirm that in both cases, the recycling treatment allows benefits to be gained for the environment through the recovery of the secondary raw materials. These benefits are higher for the “CRT technology” framework (1 kg CO2 saved per CRT) than for the “flat screen technology” (0.9 kg CO2 saved, per CRT, as the highest possible), mainly due to the high energy consumption for lead separation from the funnel glass. Furthermore, the recovery of yttrium from the fluorescent powders that are a residue of the recycling treatment would further improve the CO2 credit for both the frameworks considered, which would provide a further saving of about 0.75 kg CO2 per CRT, net of the energy and raw materials needed for the recovery.Overall, this study confirms that, even with a change in the destination of the recovered materials, the recycling processes provide a benefit for the environment: indeed the higher loads for the environment are balanced by avoiding the primary production of the recovered materials.  相似文献   

3.
While the cathode ray tube (CRT) funnel containing lead could be transported to a smelting facility to recover lead, which could be an available option in domestic, a proper technology to recycle a CRT panel must be developed. Thus, it was suggested that CRT panel glass be used as aggregates of concrete blocks and clay bricks. Samples of blocks and bricks were fabricated with CRT powders and tested to measure their strength and absorption rate to determine their qualities, and environmental soundness was determined by measuring the leaching rate of hazardous metals. For concrete blocks, CRT panel glass powders incorporated as aggregates up to 40 % replacing stone powder was proposed as the proper condition for manufacturing blocks. Around 2 % of CRT panel incorporated into clay brick to substitute Kaoline was suggested to fabricate the best quality of clay brick. Results of leaching test met the criteria with much less concentration of hazardous metals, even lead compound containing in the CRT funnel. To conclude, the use of CRT panel powder after crushing it to the proper size as an aggregate of concrete blocks or clay bricks could be one of the appropriate alternatives to recycle for CRT glass waste being generated drastically in a short term.  相似文献   

4.
The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.  相似文献   

5.
Journal of Material Cycles and Waste Management - Cathode ray tube (CRT) monitors represent currently one of the most produced category of electronic waste. In CRTs most of the glass components...  相似文献   

6.
Cathode ray tube (CRT) funnel glass remains an urgent environmental problem and is composed mainly of lead oxide and silicon oxide. In this research, the residue could be obtained from 2 h to 500 rpm activated CRT funnel glass after extracting lead via acid leaching under the conditions of HNO3 concentration 1.0 mol/L, leaching temperature 95 °C and leaching time 1 h. In order to reutilize the residue, its physico-chemical properties were characterized by scanning electron microscopy, Brunauer–Emmett–Teller, thermogravimetric analysis, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that the residue was an amorphous superfine powder with approximately 93 wt% silica oxide and specific surface area of more than 170 m2/g. It can be reutilized as white carbon black.  相似文献   

7.
This work is concerned with open-loop recycling of end of life Cathode Ray Tubes glass (an unsolved problem when considering that in Europe almost 90% of EOL electronic goods is disposed of in landfills), focusing on the development of glass-ceramics from panel or funnel glass with dolomite and alumina, and the evaluation of the tendency towards crystallisation with particular attention on composition and thermal treatment. Glasses were melted at a temperature of about 1500 degrees C and transformed into glass-ceramics by different thermal treatments (900 degrees C to approximately 1100 degrees C temperature range and 0.5 to approximately 8h soaking time). By using the evaluation of thermal, mineralogical and microstructural data it has been pointed out that a good degree of crystallisation is reached at about 1000 degrees C and with a high proportion of waste glass (50-75%) if 40-45% of CaO and MgO bearer (dolomite) is introduced. In this way alkaline and alkaline-earth silicate and aluminosilicate mainly develop probably with a surface mechanism.  相似文献   

8.
Journal of Material Cycles and Waste Management - Disposal of waste CRT glass is now an urgent environmental protection issue. We collected waste CRT glass from monochrome and color television...  相似文献   

9.
Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.  相似文献   

10.
In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides.Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%.Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.  相似文献   

11.
Disposal of PC monitors and TV sets is a growing problem, with over 40% of the weight of these systems comprised of waste glasses with high Pb (funnel) or Ba–Sr concentrations (panel), making them unsuitable for recycling and manufacturing new glass. A possible way to re-use these glasses is in the manufacturing of clay bricks and roof tiles. This possibility was appraised by laboratory simulation of the brickmaking process and technological characterization of unfired and fired products. The recycling of both funnel and panel glasses into clay bodies is technologically feasible, resulting in a substantially reduced plasticity behaviour during shaping–drying (implying a reduction of mechanical strength), and a promotion of sintering during firing. No significant release of Pb, Ba, and Sr was observed during the firing and leaching test for the carbonate-poor body; in contrast, some Pb volatilization during firing and Sr leaching were observed for the carbonate-rich body. Additions of 2 wt.% appear to be practicable, while 5 wt.% glass induces unacceptable modifications of technological properties. The recommended amount is within 2 and 4 wt.%, depending on the characteristics of the clay bodies. The main constraint is that the glass must have a particle size below the limit of the pan mills used in brickmaking (<1 mm).  相似文献   

12.
以废弃的阴极射线管锥玻璃碱性浸出渣及屏玻璃混合粉末为原料烧制泡沫玻璃。考察了发泡温度、屏玻璃加入量、发泡剂种类、发泡剂加入量、稳泡剂添加量对所制备的泡沫玻璃密度及抗压强度的影响。实验结果表明:在发泡温度800 ℃、屏玻璃加入量50%(w)、稳泡剂硼酸加入量5%(以锥玻璃碱性浸出渣及屏玻璃粉末总质量为基准,下同)、发泡剂SiC加入量15%最佳条件下烧制的泡沫玻璃密度达417 kg/m3,抗压强度达1.09 MPa,可满足建筑用泡沫玻璃的Ⅳ型物理性能指标。本实验烧制的泡沫玻璃的Pb浸出量为1.27 mg/L,Ba浸出量为0.06 mg/L,均满足固体废物的浸出毒性标准。  相似文献   

13.
Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.  相似文献   

14.
Within the European Union, it is estimated that between 8 and 9 million tonnes of waste electric and electronic equipment (WEEE) arises annually, of which television sets and computers account for an important part. Traditionally, Cathode Ray Tubes (CRT) have been used for TVs and computer monitors, but are rapidly being replaced by flat-screen technology. Only part of the discarded CRT glass is being recycled. Primary smelters use large amounts of silica flux to form iron-silicate slag, and can, in most cases, tolerate lead input. Use of discarded CRT glass in copper smelting is a potential alternative for utilization of the glass.The mineralogical composition of a slag sampled during ordinary slag praxis has been compared with that of a mixture of slag and CRT glass when re-melted and slowly cooled. Slag (iron-silicate slag) from Boliden Mineral AB, Sweden, was used for the experiments. Slag and glass have been mixed in various proportions: pure slag, pure glass, 90% slag-10% glass and 65% slag-35% glass, and heated in an inert atmosphere up to 1400 °C in a Netzsch Thermal Analysis (TA) instrument. The re-melted material has been analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM) to determine changes in mineralogical composition after mixing with glass.The results show that the main mineralogical component of the slag is fayalite; the CRT glass is amorphous. The main crystalline phases of the slag do not change with addition of glass. An amorphous phase appears when the addition of glass is increased, which gives the sample a different structure.  相似文献   

15.
An attempt has been made to establish an approach and a methodology to quantify electronic waste (e-waste) in India. The study was limited to personal computers (PCs) and televisions (TVs) within the state boundaries of Delhi and in selected areas in the National Capital Region (NCR). Material flow analysis was used to establish an e-waste trade value chain, where cathode ray tubes (CRTs) were tracked in the e-waste dismantling stream of the CRT regunning process. The market supply method was used to estimate the theoretical amount of e-waste for each item. Sensitivity analysis was carried out for PCs, using 5 years and 7 years as the average life, and for TVs, using 10 years and 12 years as the average life. Externalities such as e-waste entering the study area from outside were factored into the final e-waste analysis. Sensitivity analysis on the average life also factored in elements of active usage, reuse, and storage of electronic items and consumer behavior into assumptions about the obsolescence rate in market supply method. A primary survey indicated an output of 1800–2100 CRTs per day from all regunning units in the study area. This range validated the theoretical output for an average life of 7 years for a PC and 12 years for a TV. Using this approach, e-waste was estimated to reach 2 million units from the domestic market by 2010.  相似文献   

16.
Journal of Material Cycles and Waste Management - In this study, a mechanochemical activation technique to effectually extract lead from the funnel glass of cathode ray tube (CRT) is proposed. A...  相似文献   

17.
胡彪  回文龙 《化工环保》2017,37(4):389-394
随着显像管技术的发展,我国迎来了大量阴极射线管(CRT)玻璃的报废期。废弃的CRT玻璃中含有大量的铅,属于危险废物。从国内外废CRT含铅玻璃的处理处置现状出发,归纳总结了废CRT含铅玻璃中铅的分离回收技术工艺,并分析了其特点及存在的问题。指出,未来该领域新技术的研发应同时注重4个方面:铅的回收率高,对玻璃中的其他组分能够有效利用,满足经济可行性要求,便于工业化生产。  相似文献   

18.
An innovative approach of using waste glass in cement production was proposed and tested in a laboratory and cement production plant. The laboratory characterization of 32 types of glass show that the chemical composition of glass does not vary significantly with its color or origin but depends on its application. The alkali content of glass, a major concern for cement production varies from 0 to 22%. For the glass bottles mainly found in Hong Kong waste glasses, the alkali content (Na2O) ranges from 10 to 19% with an average around 15%. There is no significant change of the SO2 content in the gas exhaust of the rotary kiln when about 1.8 t/h of glass bottles were loaded along with the 280-290 t/h raw materials. The content of NOx, mainly depends on the temperature of the kiln, does not show significant change either. The SO3 content of the clinker is comparable with that obtained without the loading of glass. The alkaline content shows a slight increase but still within three times the standard deviation obtained from the statistical data of the past year. The detailed analysis of the quality of the cement product shows that there is not any significant impact of glass for the feeding rate tested.  相似文献   

19.
Lead can be recovered from funnel glass of waste cathode ray tubes via reduction melting. While low-temperature melting is necessary for reduced energy consumption, previously proposed methods required high melting temperatures (1400 °C) for the reduction melting. In this study, the reduction melting of the funnel glass was performed at 900–1000 °C using a lab-scale reactor with varying concentrations of Na2CO3 at different melting temperatures and melting times. The optimum Na2CO3 dosage and melting temperature for efficient lead recovery was 0.5 g per 1 g of the funnel glass and 1000 °C respectively. By the reduction melting with the mentioned conditions, 92% of the lead in the funnel glass was recovered in 60 min. However, further lead recovery was difficult because the rate of the lead recovery decreased as with the recovery of increasing quantity of the lead from the glass. Thus, the lead remaining in the glass after the reduction melting was extracted with 1 M HCl, and the lead recovery improved to 98%.  相似文献   

20.
Data for the composition of municipal solid waste (MSW) from around the world are used to further examine a previously reported statistical correlation between the fraction of food residues and the fractions of paper and board, metal, glass and plastics residues in MSW. For data from many locations, these correlations are statistically significant; multiple linear regressions are computed. The fraction of food waste decreases as the fractions of waste from paper and board, metals and glass increase.The situation in the U.S.A. is examined further for just packaging waste. Similar correlations are established for the fraction of food residues and the fractions of paper and board and plastics packaging residues for predicted compositions for 1980 to 2000. Similar correlations for the U.K. are not statistically significant. Some reasons for this are postulated.The results of the statistical analyses predict that a strategy for decreasing the fraction of food waste in MSW is to increase the use of food packaging by some amount, especially plastics and metals, contrary to conventional wisdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号