首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polylactide (PLA) composites with 10–30 wt% of commercial fine grain filler of native cellulose were prepared by melt-mixing, and examined. The composite films had esthetic appearance, glossy surface, creamy color and density close to that of neat PLA. Good dispersion of the filler in PLA matrix was achieved. The composites were stiffer than neat PLA; in the glassy region the storage modulus increased by approx. 30 %. The tensile strength of the composite materials in the temperature range from 25 to 45 °C was similar to that of neat PLA. No marked decrease in molar mass of PLA in the composites occurred during processing in comparison to neat PLA. Moreover, thermogravimetry experiments demonstrated good thermal stability of the composites; 5 % weight loss occurred well above 300 °C.  相似文献   

2.
The objective of this work is to study the feasibility of reinforcing polymer composites by utilizing the biofibers from the agricultural residue of Moringa oleifera pod husks (MOPH). The chemical and physical properties of the fibers were comprehensively investigated to evaluate their potential as a filler in gelatin-based films. The effect of MOPH fiber concentrations of 0, 5, 10, and 15 wt% on the water vapor permeability (WVP), and mechanical and thermal properties of the gelatin-based films was studied. By incorporation of 10 wt% of the MOPH fibers in gelatin, the highest tensile strength and Young’s modulus, and the lowest WVP properties were obtained. Scanning electron microscopy (SEM) photographs indicated good interfacial adhesion between the fibers and the gelatin matrix. TGA of the biocomposites revealed an improvement of thermal stability. Moreover, under accelerated weathering, the gelatin-MOPH-10% biocomposite degraded more slowly than the gelatin control. These results indicate that the MOPH fibers are a good reinforcing filler and may be useful for biocomposite applications.  相似文献   

3.
Biochemical sludge (BS), generated in the waste water treatment of paper mills, was pretreated by enzyme hydrolysis. The effect and action mechanism of the enzymatic treatment on the properties of polyvinyl chloride (PVC) matrix composites with BS were discussed. Results showed that when the filler content was 30 wt%, the tensile strength of the PVC composites filled with BS and its modified products which were pretreated by laccase, cellulase and hemicellulase can be increased by 38.64, 67.4, 63.5 and 66.3% than the PVC composite filled with calcium carbonate. When the dosage of filler was 40 wt%, the elastic modulus of PVC composites filled with BS and its above three modified products decreased by 53.3, 52.3, 50.0 and 46.3%, respectively. Meanwhile, the thermal stability of PVC composites can also be improved at the temperature of over 340 °C. It can be concluded that the enzyme pretreatment can improve the application performance of BS usage in PVC matrix composites.  相似文献   

4.
The industrial production of wet phosphoric acid in Morocco led to controversial stockpiling of waste phosphogypsum by-products resulting in the release of significant amounts of toxic impurities in salt marshes. In the framework of fighting against global climate change and efforts to reduce toxic industrial wastes (phosphate industry), this work presents a new polymer composite based on phosphogypsum (PhG) and polypropylene (PP).The compounds were produced by twin-screw extrusion and injection molding. The morphological results show that good affinity between PhG and PP led to good particle dispersion/distribution in the polymer matrix. Thermal characterizations showed that PhG particles improved the thermal stability of PP with a 50 °C increase at 40 wt%. The optimum tensile modulus was also obtained at 40 wt% with a 74 % increase over neat PP. Dynamical mechanical analysis showed that PhG addition can improve the viscoelastic properties of PP for potential applications under dynamic stress. Overall, it can be concluded that PhG is potential reinforcing filler for the production of PP composites and represents a promising avenue for the valorization of this waste as a new raw material while resolving some environmental issues.  相似文献   

5.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

6.
A novel biodegradable polymer based on glycerol, succinic anhydride and maleic anhydride, poly(glycerol succinate-co-maleate), poly(GlySAMA), was synthesized by melt polycondensation and tested as a matrix for composites with nanocrystalline cellulose. This glycerol-based polymer is thermally stable as a consequence of its targeted cross-linked structure. To broaden its range of properties, it was specifically formulated with nanocrystalline cellulose (NCC) at concentrations of 1, 2 and 4 wt%, and showed improved mechanical properties with NCC. Specifically, the effect of reinforcement on mechanical properties, thermal stability, structure, and biodegradability was evaluated, respectively, by tensile tests and thermogravimetric analyses, X-ray diffraction and respirometry. The neat poly(GlySAMA) polymer proved flexible, exhibiting an elongation-to-break of 8.8 % while the addition of nanowhiskers (at 4 wt%) caused tensile strength and Young’s modulus to increase, 20 and 40 %, respectively. Stiffness improved without significantly decreasing thermal stability as measured by thermogravimetric analysis. Biodegradation tests indicated that all samples were degradable but NCC reduced the rate of biodegradation.  相似文献   

7.
Wheat gluten based bioplastics with shrimp shell waste filler were prepared using compression molding. The effects of various amounts (0, 2.5, 5.0, 7.5 and 10 wt%) of shrimp shell powder and calcined shrimp shell powder on the tensile, morphological, thermal properties, and degradation of wheat gluten composites were investigated. The addition of shrimp shell powder improved the tensile properties of the wheat gluten composites. The tensile strength of the wheat gluten composite with 2.5 wt% of shrimp shell powder increased twofold compared to the wheat gluten based-bioplastic without shrimp shell loading. A comparison of the performance of the wheat gluten composites made with different shrimp shell types revealed that composites with calcined shrimp shell powder had better tensile, morphological and thermal properties due to the altered layer structure and higher mineral content resulting from calcination. Moreover, calcined shrimp shell powder had a significant influence on the degradation process of the wheat gluten composite.  相似文献   

8.
This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix.  相似文献   

9.
Composites consisting of 30 vol% PLA and 70 vol% cellulose fibres were prepared with compression moulding. In the first part of the study, the recyclability of this composite material was investigated by grinding the material and using the recyclate obtained as a filler for PLA. Thus, the recyclate was compounded with PLA in loadings ranging from 20 to 50 wt%. The composites obtained were characterised by tensile tests, Charpy impact tests, DMTA, and SEM. Tests showed that the recyclate had a relatively good reinforcing effect. Stress at break increased from about 50 to 77 MPa and the modulus increased from 3.6 to 8.5 GPa. In the second part of the study, the ability to mechanically recycle the composites obtained was evaluated by repeated processing. Composite with two loadings of the recyclate (20 wt% and 50 %) was injection moulded repeatedly, six times. Tests showed that the composite material with 20 wt% recyclate could withstand six cycles relatively well, while the composite with the higher load degraded much more quickly. For the composites with 50 wt% recyclate, signs of polymer degradation could be seen already after reprocessing the composite once.  相似文献   

10.
The aim of this study was to determine thermal and mechanical properties and applicability of ground chestnut shell waste as a filler for poly(lactic acid) composites. The used amount of filler was ranging from 2.5 to 30 wt%. Spectroscopic analysis of composites and its ingredients was conducted by means of FT-IR method. The mechanical and thermal properties of the composites were determined in the course of static tensile test, Dynstat impact strength test, DMTA analysis, and DSC method. The fractured surface morphology of biocomposites was evaluated by SEM analysis. Incorporation of the filler influenced the overall mechanical properties of the composites characterized by high stiffness and lowered impact resistance. Fabricated composites with different amounts of non-reactive natural waste filler exhibited acceptable mechanical and thermal properties. Therefore, these composites can be used as eco-friendly, biodegradable materials for low-demanding applications.  相似文献   

11.
The aim of this investigation was to extract nanocrystalline cellulose (NCC) from Moroccan Doum fibers (Chamaerops humilis) by chemical treatment to examine their potential for use as reinforcement fibers in bionanocomposite applications. The chemical composition, morphological and structural properties of the Doum fibers was determined at different stages of chemical treatment. Morphological (transmission electron microscopy and scanning electron microscopy), structural characterization (X-ray diffraction, Fourier transformed infrared), thermal characterization (thermogravimetric analysis). The suspension electrostatic stabilization (zeta potential) of NCCs was also carried out. The results of these characterization analysis found that average size of the NCC is 220 nm in length and 11 nm in diameter, with high crystallinity index (93 %), a thermal stability comparable to that of untreated Doum fibers (degradation temperature 340 °C), which is reasonably promising for the use of these nanofibers in reinforced-polymer manufacturing, and a good stability in water suspension that it allows their utilization such as reinforcement of the water-soluble polymers to prepare the bio-nanocomposite.  相似文献   

12.
Green composites obtained from biodegradable renewable resources have gained much attention due to environmental problems resulting from conventionally synthetic plastics and a global increasing demand for alternatives to fossil resources. In this work we used different cellulose fibers from used office paper and newspaper as reinforcement for thermoplastic starch (TPS) in order to improve their poor mechanical, thermal and water resistance properties. These composites were prepared by using tapioca starch plasticized by glycerol (30 % wt/wt of glycerol to starch) as matrix reinforced by the extracted cellulose fibers with the contents ranging from 0 to 8 % (wt/wt of fibers to matrix). Properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetric analysis, water absorption measurements, scanning electron microscopy, and soil burial tests. The results showed that the introduction of either office paper or newspaper cellulose fibers caused the improvement of tensile strength and elastic modulus, thermal stability, and water resistance for composites when compared to the non-reinforced TPS. Scanning electron microscopy showed a good adhesion between matrix and fibers. Moreover, the composites biological degraded completely after 8 weeks but required a longer time compared to the non-reinforced TPS. The results indicated that these green composites could be utilized as commodity plastics being strong, inexpensive, plentiful and recyclable.  相似文献   

13.
A poly(lactic acid) (PLA)/polyamide 11 (PA11)/SiO2 composite was mixed from PLA, PA11, and nanosilica particles through twin-screw extrusion. The PLA/PA11/SiO2 composite was evaluated with tensile and Izod impact tests, light transmission and haze measurement, and isothermal and nonisothermal crystallization behavior determinations. The PLA/PA11/SiO2 (97.0/3.0) composite had approximately 10.8% less ultimate tensile strength than neat PLA, but it had greater ductility and approximately ninefold greater elongation at break. A dimple morphology was observed on the fractural surface of the PLA/PA11/SiO2 composite, indicating that the incorporation of PA11 and nanosilica particles increased the ductility of the PLA matrix. PLA with less than 3 wt% of PA11 and 0.5 phr of nanosilica particles had an Izod impact strength of 8.72 kJ/m2. PA11 and nanosilica particles effectively toughened this PLA polymer; they accelerated both isothermal and nonisothermal crystallization rates and increased the crystallinities of the resulting composites under isothermal and nonisothermal crystallization processes.  相似文献   

14.
In the present study, hybrid electrospun polylactide (PLA) fibers reinforced with highly dispersed crystalline bacterial cellulose nanowhiskers (BCNW) in solution concentrations up to 15 wt% were developed and characterized. The overall aim was to encapsulate dispersed BCNW in fibers to be later re-dispersed in virgin PLA by melt compounding. Initially, the suitability of three different solvents [1,1,1,3,3,3-hexafluoro-2-propanol (HFP), acetone–chloroform and chloroform/polyethylene glycol (PEG)] for fiber production was evaluated and solutions containing 5 wt% BCNW were used to generate electrospun hybrid PLA fibers. These fibers presented a homogeneous morphology, as assessed by scanning electron microscopy, and transmission electron microscopy images demonstrated that BCNW were well distributed along the fibers. Differential scanning calorimetry analyses showed that the incorporation of PEG into the fibers resulted in a Tg drop due to a plasticization effect and decreased thermal stability as a result of low interactions between the matrix and the BCNW. Subsequently, fibers were produced from the selected solutions (HFP and acetone–chloroform) containing up to 15 wt% BCNW. As a result of the great increase in the viscosity of the solutions, lower solids contents were required, leading to a better dispersion and incorporation degree of BCNW within the fibers. HFP was found to be a more suitable solvent, since higher incorporation levels were estimated by X-ray diffraction and improved matrix–filler interactions were suggested by a slight increase in the Tg of the fibers.  相似文献   

15.
Continuing growth of biofuel industries is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. This research effort has quantified the effects on mechanical properties of adding DDGS and glycerol to a commercial thermoplastic starch (TPS). The methodology was to physically mix DDGS, as filler, with the TPS pellets and injection mold the blends into test bars using glycerol as a processing aid. The bars were then mechanically tested with blends from 0 to 65 %, by weight, of plasticized filler. The test bars were typically relatively brittle with little yielding prior to fracture with elongation between 1 and 3 %. The addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the starch, and up to 30 % filler, the tensile strength drops about 15 %. The 20 and 50 % blends (without glycerol) have slightly greater stiffness than pure starch. With some other blends, the presence of plasticized filler degrades the tensile modulus with 35 % filler yielding about 1/3 the stiffness. Changes in the flexural modulus are much more pronounced as 20–25 % filled TPS has a 30 % increase in flexural stiffness. In terms of surface hardness, blends up to 60 % filler are within 20 % of the TPS baseline.  相似文献   

16.
Dimensional stability and mechanical performance of polypropylene thermoplastic composites filled with sunflower stalk (SS) flour at 30, 40, 50, and 60 wt% contents of the SS flour were investigated. The thickness swelling and water absorption of the specimens increased with increasing SS flour content. The modulus in the flexural and tensile improved with increasing SS flour content while the tensile and flexural strengths of the specimens decreased. The use of maleic anhydride polypropylene (3 wt%) had a positive effect on the dimensional stability and mechanical properties of the polypropylene thermoplastic composites filled with SS flour. The melting temperature of polypropylene decreased with increasing content of the SS flour. The degree of crystallinity of filled polypropylene composites between fibre loading of 0–30 % by weight was higher than that of unfilled polypropylene composites. However, further increment in the filler content decreased the degree of crystallinity. The obtained results showed that SS flour could be potentially suitable raw material in the manufacture of polypropylene composites.  相似文献   

17.
Novel bio-based green films were prepared using wheat protein isolate (WPI) by solution casting method using Propylene Glycol as a plasticizer for packaging applications. The effect of the plasticizer content (10, 15, 20 and 25 wt%) on mechanical properties (tensile strength, young’s modulus and  % of elongation) was investigated. A thermal degradation and phase transition of the prepared WPI was assessed by means of TGA and DSC analysis. The results showed that the tensile strength and young’s modulus decreased and  % of elongation increased with increasing PG content. The ATR-FTIR and SEM were used for structural characterization and morphology of the films, respectively. FTIR studies reveals that the intensity of the bands corresponding to the amide groups increases with increasing PG content tending to increase protein–PG interactions. Further, the glass transition temperature was decreased and the thermal stability of the WPI was found to be increased by plasticization. The overall thermal stability of the films was improved and is attributed to the increase in mobility of the polymer chains.  相似文献   

18.
Natural filler/poly(lactic acid)-Based composites have been prepared by melt blending in order to investigate the resulting thermal, mechanical, and oxygen permeability properties. To this aim, several wastes or by-products (namely, cellulose fibers, wood sawdust, hazelnut shells, flax fibers, corn cob and starch) have been used, ranging from 10 to 30 wt%. The presence of these fillers is responsible of a slight reduction of the polymer degradation temperature in nitrogen as well as of a significant increase of the storage modulus as a function of the filler content. The experimental data obtained by dynamic mechanical analysis have been mathematically fitted, employing three micromechanical models (namely, Voigt, Reuss and Halpin–Tsai). Furthermore, the presence of cellulose or starch has turned out to significantly reduce the polymer oxygen permeability. Finally, in order to fully assess the feasibility of such materials, an economic analysis has been carried out and discussed.  相似文献   

19.
The aim of this study is to evaluate the impact of nano-SiO2 and bark flour (BF) on the natural fiber–plastic composites engineering properties made from high density polyethylene (HDPE) and beech wood flour (WF). For this purpose, WF and BF in 60 mesh size and weight ratio of (50, 0 %), (30, 20 %), (10, 40 %) and (0, 50 %) respectively were mixed with HDPE. In order to increase the interfacial adhesion between the filler and the matrix, the maleic anhydride grafted polyethylene was constantly used at 3 wt% for all formulations as a coupling agent. The nano-SiO2 particles with weight ratio of 0, 1, 2, and 4 % were also utilized to enhance the composites properties. The materials were mixed in an internal mixer (HAAKE) and then the bark and/or wood–plastic composite samples were made utilizing an injection molding machine. The physical tests including water absorption and thickness swelling, and mechanical tests including bending characteristics and un-notched impact strength were carried out on the samples based on ASTM standard. The results indicated that as the BF content increased in the composite, mechanical and physical properties were reduced, but the given properties were increased with the addition of nano-SiO2. The addition of nano-SiO2 had a negative impact on the physical properties, but when it was up to 2 %, it increased the impact strength.  相似文献   

20.
Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torque rheometer (120 °C, 50 rpm) for 6 min. The mixtures obtained were molded by heat compression and further characterized. Addition of lignocellulosic fibers in the matrix decreased the water absorption at equilibrium. The diffusion coefficient decreased sharply around 5% fiber concentration, and further fiber additions caused only small variations. The thermogravimetric (TG) analysis revealed improved thermal stability of matrix upon addition of fibers. The Young’s modulus and ultimate tensile strength increased with fiber content in the matrix. The storage modulus increased with increasing fiber content, whereas tanδ curves decreased, confirming the reinforcing effect of the fibers. Morphology of the composites analyzed under the scanning electron microscope (SEM) exhibited good interfacial adhesion between the matrix and the added fibers. Matrix degraded rapidly in compost, and addition of increased amounts of coconut fiber in the matrix caused a slowdown the biodegradability of the matrix. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号