首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Increasing demand in the use of poly(lactic acid) (PLA) leads to a debate about using potential foodstuffs for plastic production and a moral issue when starvation problem is taken into account. One of the solutions is recycling of PLA; however, recycling results in property losses during melt processing due to low thermal stability of PLA. This study focuses on using chain extenders to offset thermal degradation of recycled PLA. The effects of a diisocyanate and a polymeric epoxidized chain extender on the properties of the recycled poly(lactic acid) were investigated. In order to mimic the recycling process, PLA was subjected to thermo-mechanical degradation using a laboratory scale compounder. Chain extender type, loading and mixing time were investigated. On-line rheology and intrinsic viscosity measurements of PLA before and after chain extension confirmed that the molecular weight increased. Dynamic mechanical analysis, rheology and tensile tests revealed that the chain extenders led to a significant increase in modulus, strength and melt-viscosity. It was found that diisocyanate had slightly higher and faster chain extension reactivity than polymeric extender. Differential scanning calorimetry results showed an increase in the crystallization temperature due to the branched and extended chain structure.  相似文献   

2.
The chemical recycling of poly(lactic acid) (PLA) to its monomer is crucial to reduce both the consumption of renewable resources for the monomer synthesis and the environmental impact related to its production and disposal. In particular, the production of lactic acid from PLA wastes, rather than from virgin raw materials, it is also possible to achieve considerable primary energy savings. The focus of this work is to analyse deeply the PLA hydrolytic decomposition by means of a kinetic model based on two reactions mechanism. To this end, new experimental data have been gathered in order to investigate a wider temperature range (from 140 to 180 °C) and to extend the water/PLA ratio up to 50 % of PLA by weight. The reported results clearly highlight that more than 95 % of PLA is hydrolyzed to water-soluble lactic acid within 120 min, when it is hydrolyzed within 160–180 °C. Furthermore, the kinetic constant is highly influenced by reaction temperature. The proposed “two reactions” kinetic mechanism complies satisfactorily with the experimental data under analysis.  相似文献   

3.
Poly(lactic acid) (PLA) is increasingly utilized as an alternative to petroleum-based polymers in order to reduce their impact on the environment. The monomer of PLA is mainly produced from corn, which, in addition to its food utilization, can be also used for the production of bioethanol or biofuels. In this work the depolymerization (chemical recycling) of PLA pellets in a batch reactor at temperatures near the melting temperature of solid PLA has been investigated to produce lactic acid. New experimental data are presented and a kinetic model is provided for a first analysis. With a residence time less than 120 min, a yield of lactic acid greater than 95 % has been obtained at temperatures of 160 and 180 °C for pressure equal to water vapour pressure and a water/PLA ratio by weight equal ~10.  相似文献   

4.
This work focused on the durability of short jute fiber reinforced poly(lactic acid) (PLA) composites in distilled water at different temperatures (23, 37.8 and 60 °C). Morphological, thermal and mechanical properties (tensile, flexural, and impact) of jute/PLA composites were investigated before and after aging. Different from traditional synthetic fiber reinforced polymer composites, the stability of jute/PLA composites in water was significantly influenced by hydrothermal temperature. The mechanical properties of the composites and molecular weight of PLA matrix declined quickly at 60 °C, however, this process was quite slower at temperatures of 23 and 37.8 °C. Impact properties of the composites were hardly decreased, but the tensile and flexural properties suffered a drop though to various degrees with three degradation stages at 23 and 37.8 °C. The poor interface of composites and the degradation of PLA matrix were the main damage mechanism induced by hydrothermal aging. Furthermore, considering the hydrolysis of PLA matrix, the cleavage of PLA molecular chain in different aging time was quantitatively investigated for the first time to illustrate hydrolysis degree of PLA matrix at different aging time.  相似文献   

5.
Organic–inorganic hybrid coatings based on poly(ε-caprolactone), poly(ethylene oxide) or poly(lactic acid) as organic phase and silica from tetraethoxysilane as inorganic phase were prepared by the sol–gel approach. Coatings were applied onto poly(lactic acid) films for food packaging in order to improve its barrier properties towards oxygen and water vapour. All the prepared coatings were dense, homogeneous layers characterized by a good adhesion to the substrate. The permeance of the coating layers resulted one order of magnitude lower than that of the uncoated poly(lactic acid) (PLA) film. The hydrophilic character of the coating did not permit to gain a significant decrease in the water vapour permeance. The perfect visual transparency of the coatings allows their application without worsening of the esthetical properties of the substrate PLA film.  相似文献   

6.
This study produced poly (lactic acid) sheets using a biaxial stretching process, to investigate the effects of biaxial stretching on thermal properties, crystallinity, shrinkage and mechanical properties of PLA films. The results of differential scanning calorimetry show that the glass temperature peak of PLA films, which weakened after stretching. The cold crystallization peak of PLA films nearly disappeared at stretch ratios of 4 × 4 with a stretching rate above 50 %/s. The orientation and strain crystallization of PLA films were suppressed at stretching temperatures of approximately 100–110 °C. The shrinkage of PLA decreased proportionally to the stretch rate and inversely proportional to the stretching temperature, suggesting that the internal stresses frozen in the amorphous phase were an indication of a decrease in the crystallinity of the films, implying that PLA films would be best suited to low-shrinkage applications. The stress–strain of the PLA films increased considerably following the biaxial stretching process. In addition, PLA films exposed to hot water treatment show a slight decrease in stress values, probably attributable to a relaxation of the molecules, which have undergone orientation but failed to crystallize.  相似文献   

7.
In this study, the hydrolytic degradation of Poly(lactic acid) (PLA) and acetylated PLA (PLA-Ac)–clay nanocomposites were investigated. The organo clay was obtained by ion exchange reaction using cetyl tri methyl ammonium bromide (CTAB). Nanocomposites containing 2, 5 and 8% mass ratio of organo clay (CTAB-O) were prepared. PLA and its organo clay nanocomposites were characterized by scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-ray diffraction (XRD) to determine the morphology before and after hydrolytic degradation. Fourier transform infrared (FTIR) analyses of PLA and PLA-Ac were also obtained. The hydrolytic degradation of polymers and their composites were investigated in the phosphate buffered saline solution (PBS). The results showed that controlled hydrolytic degradation was observed in the samples with end group modification of PLA. While weight loss of PLA films was 28%, that of PLA-Ac films was 18% after 60 days degradation time. The weight loss was obtained as 29.5 and 25.5% for PLA-5 wt% organo clay (PLA/5CTAB-O) and PLA-Ac-5 wt% organo clay (PLA-Ac/5CTAB-O) nanocomposites films, respectively. It was also observed that thermal degradation of PLA-Ac was much more than that of PLA. Hydrolytic degradation increased depending on organo clay content. The end group modificated PLA results in controlled hydrolytic degradation. While hydrolytic degradation in polymer films occurred as surface erosion, bulk erosion was observed in composite films.  相似文献   

8.
From an environmental point of view, mechanical recycling is, in general, a good end-of-life option for poly(lactic acid) (PLA), one of the most important biobased polymers. However, the degradation of PLA during the service life and, especially, during the mechanical recycling process, leads to a decrease in the properties of PLA, thus reducing the applications of the recycled plastic. The main aim of this work was to study the addition of small amounts of halloysite nanotubes, during the recycling step, as the basis of a cost-effective method for improving the properties of the recycled PLA. Raw halloysite was modified with an aminosilane, and 2% by weight of both raw and modified halloysite were melt compounded with PLA previously subjected to accelerated ageing. The addition of the nanotubes led to recycled materials with improved properties because halloysite reduces the degradation of PLA by blocking the carboxyl groups, generated during the ageing and washing steps, which catalyze the degradation during the recycling process. This effect was more intense in the silanized nanotubes, because the carboxyl groups were effectively blocked by acid–base interactions with the amino groups of the chemical modification. The properties of the recycled plastic with only 2 wt% of silanized halloysite were very close to those of the virgin plastic.  相似文献   

9.
This work aims at analyzing the energy efficiency of the chemical recycling process of polylactic acid (PLA) and its sustainability from an environmental point of view. The results show that the production of lactic acid from chemical depolymerization of PLA is preferable, from an energy point of view, to the production of lactic acid by glucose fermentation. The study also shows that the environmental footprint of the analyzed process is larger than that of the PLA mechanical recycling.  相似文献   

10.
Poly(dl-lactic acid) or PLA is a biodegradable polymer. It has received much attention since it plays an important role in resolving the global warming problem. The protease produced by Actinomadura keratinilytica strain T16-1 was previously reported as having PLA depolymerase potential and being applicable to PLA biodegradation, which was used in this work. Therefore, this research demonstrates the important basic knowledge on the biological degradation process by the crude PLA-degrading enzyme from strain T16-1. Its re-polymerization was evaluated. The optimization of PLA degradation by statistical methods based on central composite design was determined. Approximately 6700 mg/l PLA powder was degraded by the crude enzyme under optimized conditions: an initial enzyme activity of 200 U/ml, incubated at 60 °C for 24 h released 6843 mg/l lactic acid with 82% conversion, which was similar to the commercial enzyme proteinase K (81%). The degradable products were re-polymerized repeatedly by using commercial lipase as a catalyst under a nitrogen atmosphere for 6 h. A PLA oligomer was achieved with a molecular weight of 378 Da (n = 5). This is the first report to demonstrate the high efficiency of the enzyme to degrade 100% of PLA powder and to show the biological recycling process of PLA, which is promising for the treatment and utilization of biodegradable plastic wastes in the future.  相似文献   

11.
A new route to prepare poly(lactic acid) (PLA)/thermoplastic starch (TPS) blends is described in this work using poly(ethylene glycol) (PEG), a non-toxic polymer, as a compatibilizer. The influence of PEG on the morphology and properties of PLA/TPS blends was studied. The blends were processed using a twin-screw micro-compounder and a micro-injector. The morphologies were analyzed by scanning and transmission electron microscopies and the material properties were evaluated by dynamic-mechanical, differential scanning calorimetry, thermogravimetric analysis and mechanical tests. PLA/TPS blends presented large TPS phase size distribution and low adhesion between phases which was responsible for the lower elastic modulus of this blend when compared to pure PLA. The addition of PEG resulted in the increase of PLA crystallization, due to its plasticizing effect, and improvement of the interfacial interaction between TPS and PLA matrix. Results show that incorporation of PEG increased the impact strength of the ternary blend and that the elastic modulus remained similar to the PLA/TPS blend.  相似文献   

12.
There has been considerable interest in the use of the biodegradable polymer poly(lactic acid) (PLA) as a replacement for petroleum derived polymers due to ease of processability and its high mechanical strength. Other material properties have however limited its wider application. These include its brittle properties, low impact strength and yellow tint. In an attempt to overcome these drawbacks, PLA was blended with four commercially available additives, commonly known as masterbatches. The effect of the addition of 1.5 wt% of the four masterbatches on the mechanical, thermal, optical and surface properties of the polymer was evaluated. All four masterbatches had a slight negative effect on the tensile strength of PLA (3–5% reduction). There was a four fold increase in impact resistance however with the addition of one of the masterbatches. Differential scanning calorimetry demonstrated that this increase corresponded to a decrease in the polymer crystallinity. However there was an associated increase in polymer haze with the addition of this masterbatch. The clarity of PLA was improved through the addition of an optical brightener masterbatch, but the impact resistance remained low. The glass transition and melting temperatures of PLA were not affected by the addition of the masterbatches, and no change was observed in surface energy. Some delay in PLA degradation, in a PBS degradation medium at 50 °C, was observed due to blending with these masterbatches.  相似文献   

13.
Polylactic acid (PLA) waste has various treatment methods, such as natural decomposition, composting, incineration, and hydrolysis. Degradation of PLA waste by gamma ray and pulsed light irradiation is an efficient, safe and innovative method that also protects the environment. The focus of this study was on the development of an alternative, green technology for solving the PLA waste disposal problem of PLA, rather than using incineration or the landfill method. We used a novel approach to identify the thermal decomposition and heat properties of crystalline poly lactic acid, non-crystalline polylactic acid, and blend polylactic acid. The approach involved the degradation of the materials with gamma ray and pulsed light irradiation followed by thermogravimetric analysis (TGA). We also developed a novel approach to the heat effect, including heat reactivity properties by TGA tests and thermal mass loss simulation for proper application, processing, and waste treatment conditions. The data from this study can be used to improve the design of operation and waste treatment protocols for PLA, which will benefit the environment.  相似文献   

14.
Sorbitol and glycerol were used to plasticize sugar beet pulp-poly(lactic acid) green composites. The plasticizer was incorporated into sugar beet pulp (SBP) at 0%, 10%, 20%, 30% and 40% w/w at low temperature and shear and then compounded with poly(lactic acid) (PLA) using twin-screw extrusion and injection molding. The SBP:PLA ratio was maintained at 30:70. As expected, tensile strength decreased by 25% and the elongation increased. Acoustic emission (AE) showed correlated debonding and fracture mechanisms for up to 20% w/w plasticizer and uncorrelated debonding and fracture for 30–40% sorbitol and 30% glycerol content in SBP–PLA composites. All samples had a well dispersed SBP phase with some aggregation in the PLA matrix. However, at 40% glycerol plasticized SBP–PLA composites exhibited unique AE behavior and confocal microscopy revealed the plasticized SBP and PLA formed a co-continuous two phase system.
V. L. FinkenstadtEmail:
  相似文献   

15.
Poly(lactic acid) is one of the most promising biobased and biodegradable polymers for food packaging, an application which requires good mechanical and barrier properties. In order to improve the mechanical properties, in particular the flexibility, PLA plasticization is required. However, plasticization induces generally a decrease in the barrier properties. Acetyl tributyl citrate (ATBC) and poly(ethylene glycol) 300 (PEG), highly recommended as plasticizers for PLA, were added up to 17 wt% in P(D,L)LA. In the case of PEG, a phase separation was observed for plasticizer contents higher than 5 wt%. Contrary to PEG, the Tg decrease due to ATBC addition, modelled with Fox’s law, and the absence of phase separation, up to 17 wt% of plasticizer, confirm the miscibility of PLA and ATBC. Contents equal or higher than 13 wt% of ATBC yielded a substantial improvement of the elongation at break, becoming higher than 300%. The effect of PLA plasticization on the barrier properties was assessed by different molecules, with increasing interaction with the formulated material, such as helium, an inert gas, and oxygen and water vapour. In comparison to the neat sample, barrier properties against helium were maintained when PLA was plasticized with up to 17 wt% of ATBC. The oxygen permeability coefficient and the water vapour transmission rate doubled for mixtures with 17 wt% ATBC in PLA, but increased five-fold in the PEG plasticized samples. This result is most likely caused by increased solubility of oxygen and water in the PEG phase due to their mutual miscibility. To conclude, ATBC increases efficiently the elongation at break of PLA while maintaining the permeability coefficient of helium and keeping the barrier properties against oxygen and water vapour in the same order of magnitude.  相似文献   

16.
Biodegradable film blends of chitosan with poly(lactic acid) (PLA) were prepared by solution mixing and film casting. The main goal of these blends is to improve the water vapor barrier of chitosan by blending it with a hydrophobic biodegradable polymer from renewable resources. Mechanical properties of obtained films were assessed by tensile test. Thermal properties, water barrier properties, and water sensitivity were studied by differential scanning calorimeter analysis, water vapor permeability measurements, and surface-angle contact tests, respectively. The incorporation of PLA to chitosan improved the water barrier properties and decreased the water sensitivity of chitosan film. However, the tensile strength and elastic modulus of chitosan decreased with the addition of PLA. Mechanical and thermal properties revealed that chitosan and PLA blends are incompatible, consistent with the results of Fourier transform infrared (FTIR) analysis that showed the absence of specific interaction between chitosan and PLA.  相似文献   

17.
We herein report the effects of the component ratio and method of blending on the synthesis of stereocomplex poly(lactic acid) (SC-PLA) based on poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) prepolymers. PLLA and PDLA were prepared by direct melt polycondensation of lactic acid (DMP). Combined with the dual catalyst system, PLA prepolymers with Mw more than 20,000 were prepared by DMP. PLLA was mixed by powder blending or melt blended with PDLA. It is revealed that melt-point and spherulite growth rate of SC-PLA is strongly dependent on the perfection of SC structure. The melt point of PLA can be increased by nearly 50 °C because of the particular strong intermolecular interaction between PLLA and PDLA chains. Solid-state polycondensation (SSP) is an efficient method to increase the molecular weight of SC-PLA, but it can have a negative effect on the regularity of linear chains of SC-PLA. Thermogravimetry analyzer (TGA) results show that SC structure cannot cause the delay reaction on the thermal degradation of PLA.  相似文献   

18.
This work presents the last phase of long-term experimental studies on the biodegradation in soil behaviour of polymers destined for agricultural applications. The paper focuses on comparative studies between the biodegradation in soil behaviour of two important biodegradable polymers based on renewable resources: poly(lactic acid) (PLA) versus polyhydroxyalkanoates (PHA). Full-scale experiments were carried out during the period June 2008–January 2009. Different methods of exposure were applied in the case of polyhydroxyalkanoates, simulating the agricultural biodegradable mulching films use and their fate in soil after the end of their useful lifetime. The field results were compared with the results of biodegradation under controlled laboratory conditions simulating biodegradation in soil, using soil from the experimental field. Further, the field results were compared against the results of biodegradation under farm composting conditions.  相似文献   

19.
Reactive Blending of Biodegradable Polymers: PLA and Starch   总被引:11,自引:0,他引:11  
Poly(lactic acid) (PLA) and starch are important biodegradable polymers. Mechanical properties of blends of PLA and starch using conventional processes were very poor because of incompatibility. In this study, PLA and starch were blended with a reactive agent during the extrusion process. The affects of the reactive blending were investigated and significant improvements were confirmed by measuring the tensile strength and elongation at break, IR spectra, and DSC.  相似文献   

20.
Journal of Polymers and the Environment - This study aims to improve low intrinsic ductility of poly (lactic acid) (PLA) by using a novel bio-sourced plasticizer environmentally friendly and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号