首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prey living in risky environments can adopt a variety of behavioral tactics to reduce predation risk. In systems where predators regulate prey abundance, it is reasonable to assume that differential patterns of habitat use by prey species represent adaptive responses to spatial variation in predation. However, patterns of habitat use also reflect interspecific competition over habitat. Collared (Dicrostonyx groenlandicus) and brown (Lemmus trimucronatus) lemmings represent such a system and possess distinct upland tundra versus mesic meadow habitat preferences consistent with interspecific competition. Yet, we do not know whether this habitat preference might also reflect differences in predation risk or whether the two species differ in their behavioral tactics used to avoid predation. We performed experiments where we manipulated putative predation risk perceived by lemmings by increasing protective cover in upland and meadow habitats while we recorded lemming activity and behavior. Both lemming species preferentially used cover more than open patches, but Dicrostonyx was more vigilant than Lemmus. Both species also constrained their activity to protective patches in upland and meadow habitats, but during different periods of the day. Use of cover and vigilance were independent of habitat, suggesting that both species live in a fearsome but flattened landscape of fear at Walker Bay (Nunavut, Canada), and that their habitat preference is a consequence of competition rather than predation risk. Future studies aiming to map the contours of fear in multi-prey–predator systems should consider how predation and competition interact to modify prey species’ habitat preference, patch use, and vigilance.  相似文献   

2.
Understanding and predicting species range expansions is an important challenge in modern ecology because of rapidly changing environments. Recent studies have revealed that consistent within-species variation in behavior (i.e., animal personality) can be imperative for dispersal success, a key process in range expansion. Here we investigate how habitat isolation can mediate differentiation of personality traits between recently founded island populations and the main population. We performed laboratory studies of boldness and exploration across life stages (tadpoles and froglets) using four isolated island populations and four mainland populations of the common frog (Rana temporaria). Both tadpoles and froglets from isolated populations were bolder and more exploratory than conspecifics from the mainland. Although the pattern can be influenced by possible differences in predation pressure, we suggest that this behavioral differentiation might be the result of a disperser-dependent founder effect brought on by an isolation-driven environmental filtering of animal personalities. These findings can have important implications for both species persistence in the face of climate change (i.e., range expansions) and ecological invasions as well as for explaining rapid speciation in isolated patches.  相似文献   

3.
Studies that focus on single predator-prey interactions can be inadequate for understanding antipredator responses in multi-predator systems. Yet there is still a general lack of information about the strategies of prey to minimize predation risk from multiple predators at the landscape level. Here we examined the distribution of seven African ungulate species in the fenced Karongwe Game Reserve (KGR), South Africa, as a function of predation risk from all large carnivore species (lion, leopard, cheetah, African wild dog, and spotted hyena). Using observed kill data, we generated ungulate-specific predictions of relative predation risk and of riskiness of habitats. To determine how ungulates minimize predation risk at the landscape level, we explicitly tested five hypotheses consisting of strategies that reduce the probability of encountering predators, and the probability of being killed. All ungulate species avoided risky habitats, and most selected safer habitats, thus reducing their probability of being killed. To reduce the probability of encountering predators, most of the smaller prey species (impala, warthog, waterbuck, kudu) avoided the space use of all predators, while the larger species (wildebeest, zebra, giraffe) only avoided areas where lion and leopard space use were high. The strength of avoidance for the space use of predators generally did not correspond to the relative predation threat from those predators. Instead, ungulates used a simpler behavioral rule of avoiding the activity areas of sit-and-pursue predators (lion and leopard), but not those of cursorial predators (cheetah and African wild dog). In general, selection and avoidance of habitats was stronger than avoidance of the predator activity areas. We expect similar decision rules to drive the distribution pattern of ungulates in other African savannas and in other multi-predator systems, especially where predators differ in their hunting modes.  相似文献   

4.
Antipredator behavior studies generally assess prey responses to single predator species although most real systems contain multiple species. In multi-predator environments prey ideally use antipredator responses that are effective against all predator species, although responses may only be effective against one predator and counterproductive for another. Multi-predator systems may also include introduced predators that the prey did not co-evolve with, so the prey may either fail to recognize their threat (level 1 naiveté), use ineffective responses (level 2 naiveté) or succumb to their superior hunting ability (level 3 naiveté). We analyzed microhabitat selection of an Australian marsupial (koomal, Trichosurus vulpecula hypoleucus) when faced with spatiotemporal differences in the activity/density levels of one native (chuditch, Dasyurus geoffroii) and two introduced predators (red fox, Vulpes vulpes; feral cat, Felis catus). From this, we inferred whether koomal recognized introduced predators as a threat, and whether they minimized predation risk by either staying close to trees and/or using open or dense microhabitats. Koomal remained close to escape trees regardless of the predator species present, or activity/density levels, suggesting koomal employ this behavior as a first line of defense. Koomal shifted to dense cover only under high risk scenarios (i.e., with multiple predator species present at high densities). When predation risk was low, koomal used open microhabitats, which likely provided benefits not associated with predator avoidance. Koomal did not exhibit level 1 naiveté, although further studies are required to determine if they exhibit higher levels of naiveté (2–3) against foxes and cats.  相似文献   

5.
Many prey assess predation risk through predator chemical cues. Numerous studies have shown that (1) prey sometimes respond to chemical cues produced by heterospecifics and (2) that many species are capable of associative learning. This study extends this research by focusing on predation risk assessment and antipredator behavior in environments containing chemical cues produced by multiple prey species. The results show that green frog (Rana clamitans) tadpoles (1) assess risk from the chemical cue produced during predation by a heterospecific (gray tree frog, Hyla versicolor, tadpoles) and (2) can exhibit similarly strong behavioral responses to a mix of conspecific and heterospecific cues compared to conspecific cue alone, depending on their conditioning environment. I then discuss how the prey choice of the predators and the relative abundances of the prey species should influence the informational value of heterospecific cues.  相似文献   

6.
Parental care plasticity is critical to understanding the ecological and evolutionary influence of nest predation on life history strategies. In birds, incubation imposes a trade-off between the requirements of females (i.e., food) and egg requirements (i.e., heat and protection from predators). However, studies on this topic are rare and usually restricted to species where the male feeds the incubating female, relaxing her incubation costs. Males and females can reduce their activity at the nest to avoid detection by predators. However, females could follow two alternative antipredator strategies: to delay their return to the nest to avoid attracting attention from the potential predator or to return to the nest as soon as possible to enhance nest concealment. In this study, we manipulated the perceived risk of nest predation of incubating common blackbirds (Turdus merula), a species without incubation feeding, to study female behavioral changes induced by nest predation risk. We show experimentally that female blackbirds can reduce their nest visits in the situation with higher nest predation risk. In addition, we confirm that females significantly delay their return to the nest in the presence of a nest predator, contradicting the nest concealment hypothesis. However, our results could be interpreted as a passive antipredator response (to minimize clues given to predators) or as an active antipredator response (to search for predators to expel them from their territories).  相似文献   

7.
Iteroparous species maximize lifetime reproductive fitness by balancing current and future reproductive investments. In order to maximize fitness in the face of social or environmental heterogeneity, individuals of the same species may vary in whether they prioritize current reproductive opportunity or sacrifice immediate reproduction in order to prioritize survival and future reproductive potential. Glucocorticoid (GC) secretion plays an important role in mediating this trade-off by promoting behavioral and physiological responses associated with survival, often at the expense of nonessential (e.g., reproductive) functions. We used wood frogs (Lithobates sylvaticus [Rana sylvatica]) to test whether males and females differed in their (a) physiological response (plasma corticosterone [CORT] concentration) to standardized handling stress—a proxy for predation threat—and (b) performance of reproductive behaviors that may enhance their conspicuousness to predators. We also tested whether levels of male competition influenced sex differences in these factors, as more intense competition may require males to devote more time to risky reproductive behaviors. We found that females had lower baseline CORT but exhibited a significantly greater CORT response to a stressor and spent less time performing potentially risky behavior (surface floating) than did males. These sex differences were consistent across different levels of male mating competition. Our results reveal that during breeding, males and females may differentially respond to stressors and perform risk-prone behaviors, despite facing the same extreme breeding constraints, providing new insight into the survival-reproduction trade-off of explosively breeding species.  相似文献   

8.
Animals balance feeding and anti-predator behaviors at various temporal scales. When risk is infrequent or brief, prey can postpone feeding in the short term and temporally allocate feeding behavior to less risky periods. If risk is frequent or lengthy, however, prey must eventually resume feeding to avoid fitness consequences. Species may exhibit different behavioral strategies, depending on the fitness tradeoffs that exist in their environment or across their life histories. North Pacific flatfishes that share juvenile rearing habitat exhibit a variety of responses to predation risk, but their response to risk frequency has not been examined. We observed the feeding and anti-predator behaviors of young-of-the-year English sole (Parophrys vetulus), northern rock sole (Lepidopsetta polyxystra), and Pacific halibut (Hippoglossus stenolepis)—three species that exhibit divergent anti-predator strategies—following exposure to three levels of predation risk: no risk, infrequent (two exposures/day), and frequent (five exposures/day). The English sole responded to the frequent risk treatment with higher feeding rates than during infrequent risk, following a pattern of behavioral response that is predicted by the risk allocation hypothesis; rock sole and halibut did not follow the predicted pattern, but this may be due to the limited range of treatments. Our observations of unique anti-predator strategies, along with differences in foraging and species-specific ecologies, suggest divergent trajectories of risk allocation for the three species.  相似文献   

9.
Predator–prey relationships provide an excellent opportunity to study coevolved adaptations. Decades of theoretical and empirical research have illuminated the various behavioral adaptations exhibited by prey animals to avoid detection and capture, and recent work has begun to characterize physiological adaptations, such as immune reactions, metabolic changes, and hormonal responses to predators or their cues. A 2-year study quantified the activity budgets and antipredator responses of adult Belding’s ground squirrels (Spermophilus beldingi) living in three different California habitats and likely experiencing different predation pressures. At one of these sites, which is visually closed and predators and escape burrows are difficult to see, animals responding to alarm calls remain alert longer and show more exaggerated responses than adults living in two populations that likely experience less intense predation pressure. They also spend more time alert and less time foraging than adults at the other two sites. A 4-year study using noninvasive fecal sampling of cortisol metabolites revealed that S. beldingi living in the closed site also have lower corticoid levels than adults at the other two sites. The lower corticoids likely reflect that predation risk at this closed site is predictable, and might allow animals to mount large acute cortisol responses, facilitating escape from predators and enhanced vigilance while also promoting glucose storage for the approaching hibernation. Collectively, these data demonstrate that local environments and perceived predation risk influence not only foraging, vigilance, and antipredator behaviors, but adrenal functioning as well, which may be especially important for obligate hibernators that face competing demands on glucose storage and mobilization.  相似文献   

10.
Behavioral Ecology and Sociobiology - Many prey species mob predators to drive them away, thereby reducing their immediate and future predation risk. Given that mobbing is risky, it may also serve...  相似文献   

11.
Predator–prey interaction in aquatic ecosystem is one of the simplest drivers affecting the species population dynamics. Predation controls are recognized as important aspects of ecosystem husbandry and management. In this paper we investigated how predation control cause an increase in host growth in the abundance of hard clam (Meretrix lusoria) populations subject to mercury (Hg)-stressed birnavirus. Here we linked predator–prey relationships with a bioenergetic matrix population model (MPM) associated with a susceptible–infectious–mortality (SIM) model based on a host–pathogen–predator framework to quantify the predator effects on population dynamics of disease in hard clam populations. Our results indicated that relative high predation rates could promote the hard clam abundances in relation to predators that selectively captured the infected hard clam, by which the disease transmission was suppressed. The results also demonstrated that predator-induced modifications in host behavior could have potential negative or positive effects on host growth depending on relative species density and resource dynamics. The most immediate implication of this study for the management of aquatic ecosystem is that, beyond the potential for causing a growth in abundance, predation might provoke greater predictability in aquatic ecosystem species populations and thereby increase the safety of ecosystem production from stochastic environmental events.  相似文献   

12.
In the ongoing evolutionary arms race between predators and their prey, successful escape from the predator leads to the evolution of improved escape tactics in prey, but also predators become more effective in following and attacking the prey. Antipredatory behavior of prey is considered to be the strongest towards their most dangerous predators. However, prey species can differ both in vulnerability and efficiency of escape to a shared predator. We studied escape reactions of two vole species, the bank vole (Myodes glareolus) and the field vole (Microtus agrestis), under a simulated predation risk of the least weasel (Mustela nivalis nivalis). We conducted a laboratory experiment where a vole was given a possibility to escape from a weasel by fleeing to a horizontal tunnel or climbing the tree. Subsequently to the vole escape decision, we released a weasel to the same tunnel system to test how the weasel succeeded in following the vole. Weasel presence changed the behavior of voles as especially bank voles escaped by climbing. Instead, the majority of field voles fled into the ground-layer tunnel. The different escape tactics of the voles affected the success of the weasel, because climbing voles were less often successfully followed. We suggest that the difference in escape tactics has evolved as an adaptation to different habitats; meadow-exploiting field voles using ground-level escape while bank voles living in three-dimensional forest habitat frequently use arboreal escape tactics. This is likely to lead to different habitat-dependent vulnerabilities to predation in Microtus and Myodes vole species.  相似文献   

13.
The evolution of aposematism is linked to increased opportunities for conspicuous sexual displays since detection by potential predators is no longer disadvantageous. Therefore, phenotypic divergence in aposematic species leading to relatively cryptic forms is expected to constrain such opportunities, by restoring the trade-off between natural and sexual selection on the boldness of sexual displays. We asked if and how a derived phenotype of the poison-dart frog Oophaga granulifera that appears relatively cryptic to potential predators exhibits conspicuous sexual displays for potential mates. We used visual modeling of frog contrasts against their natural backgrounds to test if for conspecifics green frogs appear less conspicuous than red frogs as they do for birds. We conducted behavioral observations of focal red and green males to determine if green frogs adjust their display behavior to the availability of potential mates. Dorsal brightness is known to influence female preferences in at least one poison frog species. We found that, despite being less visible under some measures, green frogs may appear as bright as red frogs for conspecifics but not birds, when viewed on dark backgrounds. Additionally, green males called more intermittently than red males when advertising to distant females, but they exhibited a dramatic increase in calling activity in proximity of a female and were as active as red males in this context. Together, our results suggest that green frogs retain context-dependent conspicuousness to conspecifics despite the evolution of relative crypsis to potential predators.  相似文献   

14.
Despite facing similar constraints imposed by the environment, significant variation in life history traits frequently exists among species generally considered to comprise a single ecological guild. For juvenile flatfishes, constraints on foraging activity include variation in light and prey availability, as well as predation risk. This paper describes the visual constraints on, and divergent foraging strategies of three co-occurring north Pacific flatfish species, northern rock sole (Lepidopsetta polyxystra), Pacific halibut (Hippoglossus stenolepis), and English sole (Pleuronectes vetulus). Visual foraging abilities measured in the laboratory decreased rapidly below 10−4 μmol photons·m−2 s−1, and were similar among species. Despite similar sensory constraints, field sampling in August 2004 at a Kodiak Island nursery site (Holiday Beach, 57o41.2′ N, 152o27.7′ W) identified species differences in diets, diel foraging patterns, and within-nursery depth distributions. Northern rock sole and English sole fed primarily on bivalve siphons and polychaetes, whereas mysids dominated the diets of Pacific halibut. Northern rock sole were geographically the most widespread but feeding activity was temporally restricted to the dusk period. Pacific halibut were rare in shallow depths (<5 m) and fed most intensively prior to dusk. English sole fed throughout the daylight hours and were abundant only in the shallowest (<5 m) habitats. These differences in diets, foraging times, and habitat use appear related to previously documented species-specific behavioral characteristics as well as general spatial (increasing with depth) and temporal (increasing during foraging activity) variations in predation risk. At one extreme, the conservative behavioral strategy of northern rock sole may permit use of a broader range of foraging habitats, whereas English sole may be restricted to shallow water by limited behavioral responses to predation threat. These observations demonstrate that the appearance of habitat partitioning is not due to differences in sensory ability, but reflects multi-faceted, species-specific responses to the ecological tradeoffs between foraging and predation risks.  相似文献   

15.
Many predators hunt using the social and waste odors of their prey. It is unknown, however, whether potential prey modify their behavior in response to the risks of predation associated with accumulations of conspecific odor. We examined this question by measuring foraging trade-offs of wild house mice (Mus domesticus) in the field where we increased both predation risk and conspecific odor at artificial food patches in a two-factor design. Mouse giving-up densities (GUDs) were significantly higher in open habitats than in closed habitats but did not differ with the addition of mouse odors. Fine-scale behavioral observations of captive mice confirmed their attraction to the conspecific odor in an enclosure experiment, without any change to the GUD. These results indicate that house mice continue to visit and forage at food patches despite accumulations of predator-attracting odors. This most likely occurs for the social benefits obtained from conspecific odor exploration; however, such behavior may cause mice to become vulnerable to considerable olfactory exploitation by their predators. Future work must therefore focus on how mice trade off the social benefits of investigating odors that also attract their enemies.  相似文献   

16.
When Are Peripheral Populations Valuable for Conservation?   总被引:27,自引:0,他引:27  
A great deal of effort is spent protecting geographically peripheral populations of widespread species. We consider under what conditions it is appropriate to expend resources to protect these populations. The conservation value of peripheral populations depends upon their genetic divergence from other conspecific populations. Peripheral populations are expected to diverge from central populations as a result of the interwoven effects of isolation, genetic drift, and natural selection. Available empirical evidence suggests that peripheral populations are often genetically and morphologically divergent from central populations. The long-term conservation of species is likely to depend upon the protection of genetically distinct populations. In addition, peripheral populations are potentially important sites of future speciation events. Under some circumstances, conservation of peripheral populations may be beneficial to the protection of the evolutionary process and the environmental systems that are likely to generate future evolutionary diversity.  相似文献   

17.
Intraguild predation constitutes a widespread interaction occurring across different taxa, trophic positions and ecosystems, and its endogenous dynamical properties have been shown to affect the abundance and persistence of the involved populations as well as those connected with them within food webs. Although optimal foraging decisions displayed by predators are known to exert a stabilizing influence on the dynamics of intraguild predation systems, few is known about the corresponding influence of adaptive prey decisions in spite of its commonness in nature. In this study, we analyze the effect that adaptive antipredator behavior exerts on the stability and persistence of the populations involved in intraguild predation systems. Our results indicate that adaptive prey behavior in the form of inducible defenses act as a stabilizing mechanism and show that, in the same direction that adaptive foraging, enhances the parameter space in which species can coexist through promoting persistence of the IG-prey. At high levels of enrichment, the intraguild predation system exhibits unstable dynamics and zones of multiples attractors. In addition, we show that the equilibrium density of the IG-predator could be increased at intermediate values of defense effectiveness. Finally we conclude that adaptive prey behavior is an important mechanism leading to species coexistence in intraguild predation systems and consequently enhancing stability of food webs.  相似文献   

18.
Madin EM  Gaines SD  Warner RR 《Ecology》2010,91(12):3563-3571
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.  相似文献   

19.
Abstract: The cane toad (Bufo marinus), a large, toxic, American anuran, was introduced to Australia in 1935. Populations of many of Australia's reptiles (snakes, varanid lizards, crocodiles) and carnivorous mammals (dasyurid marsupials) have declined because these predators are killed by the toad's powerful toxins. In contrast to these well‐studied species, little is known about the cane toads impacts on Australian birds. We reviewed published and unpublished data on behavioral interactions between Australian avian predators and cane toads and collated distributional and dietary information to identify avian taxa potentially at risk from cane toad invasion. Cane toads are sympatric with 172 frog‐eating bird species in Australia, and an additional 8 bird species overlap with the predicted future range of the toad. Although many bird species thus are potentially at risk, behavioral observations suggest the risk level is generally low. Despite occasional reports of Australian birds being killed when they ingest cane toads, most birds either ignore toads or survive the predation event. The apparently higher tolerance of Australian birds to toad toxins, compared with Australian reptiles and marsupials, may reflect genetic exchange between Australian birds and Asian populations that encounter other bufonid species regularly and hence have evolved the capacity to recognize or tolerate this toxic prey.  相似文献   

20.
Summary Behavioral resource depression occurs when the behavior of prey individuals changes in response to the presence of a predator, resulting in a reduction of the encounter rate of the predator with its prey. Here I present experimental evidence on the response of two species of gerbils (Gerbillus allenbyi and G. pyramidum) to the presence of barn owls. I conducted the experiments in a large aviary. Both gerbils responded to the presence of barn owl predators by foraging in fewer resource patches (seed trays) and by quitting foraged resource patches at a higher resource harvest rate (giving-up density of resource; GUD). This reduced the amount of time gerbils were exposed to owl predation, and hence the encounter rate of owls with gerbils, i.e., behavioral resource depression. Thus, the presence of owls imposes a foraging cost on gerbils due to risk of predation, and also on the owls themselves due to resource depression. I then examined how resource depression relaxed over time following exposure to owls. In the days following an encounter with the predator, the reduction in foraging activity for both gerbil species eased. Increasing numbers of trays were foraged each day, and GUDs in seed trays declined. The two gerbils differed in their rate of recovery, with G. pyramidum returning to prepredator levels of foraging after 1 or 2 nights and G. allenbyi taking 5 nights or longer. Interspecific differences in recovery rates may be based on differences between the species in vulnerability to predation and/or ability to detect the presence of predators. The differences in recovery rates may be due to optimal memory windows or decay rates, where differences between species are based on risk of predation or on how perceived risk changes with time since a predator was last encountered. Finally, differences between or among competitors in recovery from resource depression may provide foraging opportunities in time for the species which recover most quickly and may have implications for species coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号