首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
综合类   1篇
基础理论   14篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2010年   3篇
  2009年   2篇
  1994年   1篇
  1986年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有15条查询结果,搜索用时 218 毫秒
1.
We describe aspects of the anatomy and suspension-feeding mechanism of a single Planctosphaera pelagica captured from the plankton in June 1992 off Bermuda in the western Atlantic. We also describe several unusual features of the larva, including its occurrence in surface waters, unusually large size, and limited swimming ability. Our account of the form and feeding behavior of P. pelagica is the first based on observations of a specimen captured and observed alive. Our limited observations suggest that the planctosphaera may use a suspension-feeding mechanism much like that of the other feeding deuterostome larvae (the pluteus and bipinnaria larvae of echinoderms and the tornaria larva of enteropneust hemichordates) known to capture food particles using a single ciliated band. Although we could not observe cilia directly, the movement of dye streams and food particles and the structure of the ciliated band suggest that some particles may be captured at the ciliated band by the reversal of ciliary beat. The planctosphaera possesses many prominent mucous glands near the food grooves. This suggests an important role of mucus in the biology of the larva, but we were not able to observe directly any role of mucus in particle capture.  相似文献   
2.
Rates of fecal pellet production have been recorded from seven species of oceanic salps feeding on natural diets. Expressed as g C defecated per mg salp body C per hour, the values range between 3.7 and 27.7. Carbon: nitrogen ratios of the salp fecal pellets average 11.4; the organic matter of the pellets is mainly protein and carbohydrate. Sinking velocities of the pellets are very high, ranging from 320 to 2 238 m d-1 for pellets from three species. However, the pellets sink slower than would be predicted from extrapolation of rates for crustacean pellets, probably due to the shape of the pellets and their density. The high rates of defecation, large size and rapid sedimentation of salp fecal pellets make them likely mechanisms for rapid transport of small particulate matter from surface waters to deep water and the benthos.  相似文献   
3.
Madin EM  Gaines SD  Warner RR 《Ecology》2010,91(12):3563-3571
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.  相似文献   
4.
Salps have higher filtration rates than most other holoplankton, and are capable of packaging and exporting primary production from surface waters. A method of kinematic analysis was employed to accurately measure salp feeding rates. The data were then used to explain how diverse body morphologies and swimming motions among species and lifecycle stages influence salp feeding performance. We selected five species, representing a range of morphologies and swimming styles, and used digitized outlines from video frames to measure body-shape change during a pulse cycle. Time-varying body volume was then calculated from the digitized salp outlines to estimate the amount of fluid passing through the filtering mesh. This non-invasive method produced higher feeding rates than other methods and revealed that body volume, pulse frequency and degree of contraction are important factors for determining volume filtered. Each species possessed a unique combination of these three characteristics that resulted in comparable filtration (range: 0.44–15.33 ml s−1) and normalized filtration rates (range: 0.21–1.27 s−1) across species. The convergence of different species with diverse morphologies on similar normalized filtration suggests a tendency towards a flow optimum.  相似文献   
5.
Carbon and nitrogen content have been measured in the solitary and aggregate generations of 11 species of salps. Regression equations for each species and generation permit estimation of carbon or nitrogen content as a function of length of live individuals. Different species of the same length may have nearly tenfold differences in carbon content. Fractionation and biochemical analysis of some samples revealed that the organic content of salps is approximately 80% protein. Ash-free dry weights average 27% of dry weights; mean carbon content is 29% of ash-free dry weight. Excess ash-free dry weight not accountable as organic material is thought to be water of hydration.  相似文献   
6.
Behavioral observations using a remotely operated vehicle (ROV) in the Gulf of California in March, 2003, provided insights into the vertical distribution, feeding and anatomy of the rare and delicate ctenophore Thalassocalyce inconstans. Additional archived ROV video records from the Monterey Bay Aquarium Research Institute of 288 sightings of T. inconstans and 2,437 individual observations of euphausiids in the Gulf of California and Monterey Canyon between 1989 and 2005 were examined to determine ctenophore and euphausiid prey depth distributions with respect to temperature and dissolved oxygen concentration [dO]. In the Gulf of California most ctenophores (96.9%) were above 350 m, the top of the oxygen minimum layer. In Monterey Canyon the ctenophores were more widely distributed throughout the water column, including the hypoxic zone, to depths as great as 3,500 m. Computer-aided behavioral analysis of two video records of the capture of euphausiids by T. inconstans showed that the ctenophore contracted its bell almost instantly (0.5 s), transforming its flattened, hemispherical resting shape into a closed bi-lobed globe in which seawater and prey were engulfed. Euphausiids entrapped within the globe displayed a previously undescribed escape response for krill (‘probing behavior’), in which they hovered and gently probed the inner surfaces of the globe with antennae without stimulating further contraction by the ctenophore. Such rapid bell contraction could be effected only by a peripheral sphincter muscle even though the presence of circumferential ring musculature was unknown for the Phylum Ctenophora. Thereafter, several live T. inconstans were collected by hand off Barbados and microscopic observations confirmed that assumption.  相似文献   
7.
Measurements of the defecation rate of Salpa thompsoni were made at several stations during two cruises west of the Antarctic Peninsula in 2004 and 2006. Rates were quantified in terms of number of pellets, pigment, carbon and nitrogen for a wide size range of both aggregate and solitary salps. Measured defecation rates were constant over several hours when salps were held at near-surface conditions from which they had been collected. The defecation rate per salp increased with both salp size and the ambient level of particulate organic matter (POM) in the upper water column. The weight-specific defecation rate ranged between 0.5 and 6% day−1 of salp body carbon, depending on the concentration of available particulate matter in the water. Carbon defecation rates were applied to biomass estimates of S. thompsoni to calculate daily carbon defecation rates for the populations sampled during the two cruises. Dense salp populations of over 400 mg C m−2 were calculated to produce about 20 mg C m−2 day−1, comparable to other major sources of vertical flux of organic material in the Southern Ocean. Measured sinking rates for salp fecal pellets indicated that the majority of this organic material could reach deep sediments within a few days, providing a fast and direct pathway for carbon to the deep ocean.  相似文献   
8.
9.
Many tropical corals have declined in abundance in the last few decades, and evaluating the causal basis of these losses is critical to understanding how coral reefs will change in response to ongoing environmental challenges. Motivated by the likelihood that marine environments will become increasingly unfavorable for coral growth as they warm and become more acidic (i.e., ocean acidification), it is reasonable to evaluate whether specific phenotypic traits of the coral holobiont are associated with ecological success (or failure) under varying environmental conditions including those that are adverse to survival. Initially, we asked whether it was possible to identify corals that are resistant or sensitive to such conditions by compiling quantitative measures of their phenotypic traits determined through empirical studies, but we found only weak phenotypic discrimination between ecological winners and losers, or among taxa. To reconcile this outcome with ecological evidence demonstrating that coral taxa are functionally unequal, we looked beyond the notion that phenotypic homogeneity arose through limitations of empirical data. Instead, we examined the validity of contemporary means of categorizing corals based on ecological success. As an alternative means to distinguish among functional groups of corals, we present a demographic approach using integral projection models (IPMs) that link organismal performance to demographic outcomes, such as the rates of population growth and responses to environmental stress. We describe how IPMs can be applied to corals so that future research can evaluate within a quantitative framework the extent to which changes in physiological performance influence the demographic underpinnings of ecological performance.  相似文献   
10.
Rates of oxygen consumption and ammonium nitrogen excretion were measured on the solitary and/or aggregate generations of ten species of oceanic salps collected by SCUBA divers during cruises in the Atlantic Ocean (1982–1985). Species that were visibly more active had higher metabolic rates than did less active species. Rates were 1.5 to 2 times lower and O:N ratios were lower when salps were held before incubation than when incubation began at the time of collection. Respiration rate showed a better relationship to length than to weight, suggesting that metabolic activity may be connected mainly with swimming. O:N ratios were between 13 and 28 for most species and generations, but higher and more variable in Pegea spp. Exretion of urea was low or undetectable. Rates of metabolic demand (turnover) ranged from 9.7 to 99% body carbon d-1 and 6.4 to 55.6% body nitrogen d-1.Contribution No. 5988 from the Woods Hole Oceanographic Institution and No. 412 from the Allan Hancock Foundation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号