首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microscale solvent extraction (MSE) method was developed for the simultaneous determination of volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) in soil. Tests of precision, recovery, and comparability to other Environmental Protection Agency (EPA) methods have been completed, and the MSE method compares well to Soxhlet and sonication extraction. Based on these validation data, EPA has assigned number 3570 to this method. Method 3570 has several advantages, including reduced use of solvent and soil sample, generating much less laboratory waste. Laboratory space and labor requirements are reduced as compared to many other sample preparation methods. Consequently, Method 3570 can provide comparable chemical data at less cost or environmental impact.  相似文献   

2.
Pyrolysis and combustion runs at 850°C in a horizontal laboratory furnace were carried out on different parts of a mobile phone (printed circuit board, mobile case and a mixture of both materials). The analyses of the carbon oxides, light hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorodibenzo-p-dioxin, polychlorodibenzofurans (PCDD/Fs), and dioxin-like PCBs are shown. Regarding semivolatile compounds, phenol, styrene, and its derivatives had the highest yields. In nearly all the runs the same PAHs were identified, naphthalene being the most common component obtained. Combustion of the printed circuit board produced the highest emission factor of PCDD/Fs, possibly due to the high copper content.  相似文献   

3.
This article presents a case study of an accelerated cleanup conducted by EPA at the Adams Plating Company (APC) Superfund site near Lansing, Michigan. The APC site remediation was a Superfund EPA-lead project under the remedial program in Region 5. An accelerated cleanup was possible at the APC site by consistently identifying, evaluating, and implementing opportunities to streamline the remedial investigation (RI) and remedial design (RD) process. Streamlining opportunities were discovered and implemented in both the technical and administrative aspects of the project. Streamlining components used to accelerate the remedial process included: (1) extensive use of field screening techniques during the Phase II RI; (2) a focused feasibility study (FS) that evaluated only practical alternatives; (3) maintaining project momentum by initiating the RD concurrent with the issuance of the Record of Decision (ROD); (4) a highly accelerated RD with limited predesign work; (5) elimination of the transition period between RD and remedial action (RA) project phases; (6) frequent and effective communication, coordination, and cooperation between all parties involved (EPA, Michigan Department of Natural Resources (MDNR), technical contractor, PRC Environmental Management, Inc. (PRC), and the public); (7) maintaining a consistent project team throughout project duration; and (8) the setting of aggressive project goals.  相似文献   

4.
The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its constituents, according to the the Classification, Labelling and Packaging (CLP) regulation. Comprehensive knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol for determining waste composition is proposed, which includes using inductively coupled plasma (ICP) screening methods to identify major elements and gas chromatography/mass spectrometry (GC–MS) screening techniques to measure organic compounds. The method includes a gross or indicator measure of ‘pools’ of higher molecular weight organic substances that are taken to be less bioactive and less hazardous, and of unresolved ‘mass’ during the chromatography of volatile and semi-volatile compounds. The concentration of some elements and specific compounds that are linked to specific hazard properties and are subject to specific regulation (examples include: heavy metals, chromium(VI), cyanides, organo-halogens, and PCBs) are determined by classical quantitative analysis. To check the consistency of the analysis, the sum of the concentrations (including unresolved ‘pools’) should give a mass balance between 90% and 110%. Thirty-two laboratory samples comprising different industrial wastes (liquids and solids) were tested by two routine service laboratories, to give circa 7000 parameter results. Despite discrepancies in some parameters, a satisfactory sum of estimated or measured concentrations (analytical balance) of 90% was reached for 20 samples (63% of the overall total) during this first test exercise, with identified reasons for most of the unsatisfactory results. Regular use of this protocol (which is now included in the French legislation) has enabled service laboratories to reach a 90% mass balance for nearly all the solid samples tested, and most of liquid samples (difficulties were caused in some samples from polymers in solution and vegetable oil). The protocol is submitted to French and European normalization bodies (AFNOR and CEN) and further improvements are awaited.  相似文献   

5.
Groundwater investigations conducted since 1988 at a Tennessee Department of Environment and Conservation (TDEC) Voluntary Oversight and Assistance Program (VOAP) site located in Millington, Tennessee, have defined the lateral and vertical extent of site chemicals of concern (COCs) consisting of tetrachloroethene (PCE), trichloroethene (TCE), and associated degradation products. Results of a groundwater remedial investigation determined that aquifer conditions were favorable for anaerobic degradation of COCs through reductive dechlorination. A subsequent groundwater feasibility study determined that monitored natural attenuation (MNA) coupled with long‐term groundwater monitoring was the most effective and suitable remedial option for the site. A Record of Decision was issued by the TDEC VOAP approving MNA and long‐term groundwater monitoring as the remedial option for the site, a first for such a site in Tennessee involving chlorinated organics. A groundwater fate and transport model (the 1998 model) developed during the RI was used as the basis for the MNA remedy. Analytical data from 1998 to 2008 indicate COCs in former high‐concentration areas continue to degrade at rates consistent with or ahead of the 1998 model predictions. Evidence of reductive dechlorination is also supported by the continued presence of breakdown products—specifically, vinyl chloride and ethene (terminal endpoint of PCE breakdown through reductive dechlorination). The continued detection of breakdown products along the flow‐path wells also confirms the effectiveness of the MNA remedy at the site. Current analytical data indicate that COC plumes beneath the site are not migrating and are actually retracting. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
During the production of thermonuclear fusion weapons at the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, between 1950 and 1963, the regional environment was extensively contaminated by volatile organic compounds (VOCs). Old Salvage Yard (OSY) on the western side of the site has been characterized as the major source of VOCs. In order to analyze the long‐term fate and transport of chlorinated VOC sources, an integrated surface and subsurface flow and transport model was developed for the Y‐12 NSC using the hydrodynamic and transport numerical package MIKE‐SHE. The model was developed considering the recent hydrogeological investigations on preferential flow and transport pathways at the site. The model was calibrated using the recorded groundwater flow and water‐quality data. The modeling simulated migration of the VOC plume for the next 100 years. Considering a range of hydrogeological and transport parameters, uncertainty of the results is discussed. The modeling predicted that tetrachloroethene, trichloroethene, and 1,2‐dichloroethene may exceed human health–related risk levels for the next 10 to 20 years. However, the contamination is unlikely to migrate to surface water under the current hydrogeological conditions and will decay below acceptable risk levels within approximately 20 years. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
From September through November 1994, the U.S. Environmental Protection Agency (EPA) conducted a field demonstration of the remediation of highly contaminated groundwater at the Nascolite Superfund site located in Millville, New Jersey. Besides high concentrations of the major contaminant, methyl methacrylate (MMA), the groundwater also contained small amounts of volatile and semivolatile organic compounds. ZenoGem® technology, an integrated bioreactor and ultrafiltration membrane system, was employed for this demonstration project. Approximately 30,000 gallons of groundwater containing MMA in concentrations of 567 to 9,500 milligrams per liter (mg/L) and chemical oxygen demand (COD) values ranging from 1,490 to 19,600 mg/L was treated. The demonstration focused on the system's ability to remove MMA and reduce COD from the groundwater. Results of the three‐month demonstration showed that average MMA and COD removal efficiencies were greater than 99.9 and 86.9, respectively. The total cost of treatment, depending on the duration of the project, is estimated to vary from $0.22 to $0.55 (in 1994 dollars) per gallon of groundwater treated. © 2001 John Wiley & Sons.  相似文献   

8.
In 1981, the Arizona Department of Health Services (ADHS) discovered groundwater contamination by solvents and chromium at the Phoenix Goodyear Airport (PGA), just outside the city of Phoenix. ADHS and the U.S. EPA sampled the site for the next two years, finding that eighteen of their wells were contaminated with trichloroethene (TCE), six exceeding ADHS's action level of five micrograms per liter (μg/l). In 1983, the PGA site was added to the National Priorities List, and, in 1984, EPA began a $3 million remedial investigation, focusing on soils and groundwater. This article discusses how that investigation inspired the authors to develop a stream-lined evaluation method for PGA's volatile organic compounds (VOCs), the process for establishing VOC cleanup levels, and the $26 million of remediation work needed to be done at the site. The heart of this effort is a computer program called VLEACH, loosely standing for VOC-LEACHing, which anticipates the influence of VOCs on PGA's groundwater, even as remediation proceeds.  相似文献   

9.
Our investigations deal with the identification and synthesis of volatile, odoriferous compounds contained in the exhaust gas of food factories and on the biodegradation of alkylpyrazines. Collection of odour emissions samples was performed with a gas sampler equipped with filter tubes containing the styrene-polymer SuperQ. After elution with solvents of different polarity, the extracts were analysed by GC/MS and chemical microreactions. Proposed structures were verified by comparison of analytical data with those of synthetic reference samples. Major components in the exhaust gas of a fat finishing factory were found to be aliphatic aldehydes, strongly dominated by hexanal. The identification of 1,2,3,3-tetramethylcyclohexene shows that for structural proof of target compounds the use of authentic reference samples is indispensable. In the exhaust gas from a chocolate factory, several carbonyl compounds and alkylated pyrazines could be identified. Biodegradation of the latter starts with hydrogenation at the nucleus.  相似文献   

10.
Contaminant concentrations in groundwater are typically analyzed using traditional laboratory analytical procedures approved by the Environmental Protection Agency (EPA) or state regulatory agencies. The use of off‐site laboratories provides very high‐quality water quality data at a relatively high cost in terms of time and money. Yet there are many instances when it is desirable to have water quality data measured in the field. The field methods for measuring water quality typically cost much less than the corresponding laboratory methods. However, the usability of the field data may be uncertain when the results are qualitatively compared to duplicate laboratory results. Groundwater samples collected during a groundwater circulation well pilot study were analyzed using field kits to measure concentrations of trichloroethylene (TCE) and the explosive compound known as RDX. A subset of the samples was split for duplicate laboratory analysis. Linear regression analysis and relative percent difference analysis were performed on the duplicate results to evaluate the comparability of the field and laboratory data. The data analyses were also used to evaluate the concept that the field kits were more accurate for specific concentration ranges, as well as the concept the field kit results would improve as field personnel gained experience with the field analysis procedures. © 2002 Wiley Periodicals, Inc.  相似文献   

11.
In March 2011, the Interstate Technology & Regulatory Council (ITRC) Contaminated Sediments Team published a web‐based Technical and Regulatory Guidance on the concepts, processes, and uses of bioavailability in a risk decision‐making framework at a contaminated sediment site. Bioavailability processes, as defined by the National Research Council (NRC; 2003), are the “individual physical, chemical, and biological interactions that determine the exposure of plants and animals to chemicals associated with soils and sediments.” Bioavailability assessment tools aid in the assessment of human and ecological exposure and development of site‐specific remedial objectives. The guidance provides information on the processes that may affect contaminant bioavailability within sediments to understand exposure within ecological and human receptors; supports the development of conceptual site models (CSMs); and describes available tools (biological, chemical, and physical) and models that are used to measure and characterize the fate and transport and potential bioavailability of contaminants. Case studies, referenced throughout the document, demonstrate the practical application of bioavailability measures. The guidance will describe the proper application of traditional and emerging sediment remediation technologies to support the selection of a remedy that is protective of human health and the environment. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
In 1992, Eaton Corporation, a major manufacturer of vehicle components and electrical and electronic controls, implemented a fast-track remediation method to expedite the installation of a groundwater recovery and treatment system to contain and mitigate a chlorinated solvent plume at an industrial site. This dual-track method included fast-track and turnkey project management techniques. Our goal was to expedite the containment and removal of identified contamination, which would protect the environment, minimize future liability, and significantly reduce remediation time and costs. This goal was in the best interests of all concerned—Eaton, the community, and the state regulatory agency. This strategy took the project from dual-track concept approval by the regulatory agency to remediation system installation and start-up in less than eight months, cutting over two years from the standard Remediation Investigation/Feasibility Study (RI/FS) approach, with consequent earlier contaminant containment. Total remediation costs were half of what they would have been under the standard RI/FS procedure for this site.  相似文献   

13.
Adaptive sampling and analysis programs (ASAPs) provide a cost-effective alternative to traditional sampling program designs. ASAPs are based on field analytical methods for rapid sample turnaround and field-based decision support for guiding the progress of the sampling program. One common objective of ASAPs is to delineate contamination present in soils, either to support feasibility studies or remedial action designs. An ASAP based on portable gas chromatograph/ mass spectrograph (GC/MS) technologies developed at Tufts University combined with decision support tools created at Argonne National Laboratory was used to delineate explosives contamination in soils at Joliet Army Ammunition Plant, Joliet, Illinois. Tufts' GC/MS technologies provided contaminant-specific identification and quantification with rapid sample turnaround and high sample throughput. Argonne's decision support tools estimated contamination extent, determined the uncertainty associated with those estimates, and indicated where sampling should continue to minimize uncertainty. In the case of Joliet, per sample analytical costs were reduced by 75 percent as compared to the cost of off-site laboratory analyses for explosives. The use of an ASAP resulted in a much more accurate identification and delineation of contaminated areas than a traditional sampling program would have with the same number of samples collected on a regular grid. While targeting explosives contamination in soils at Joliet, the ASAP technologies used in this demonstration have much broader application.  相似文献   

14.
As a remediation tool, nanotechnology holds promise for cleaning up hazardous waste sites cost‐effectively and addressing challenging site conditions, such as the presence of dense nonaqueous phase liquids (DNAPLs). Some nanoparticles, such as nanoscale zero‐valent iron (nZVI) are already in use in full‐scale projects with encouraging success. Ongoing research at the bench and pilot scale is investigating particles such as self‐assembled monolayers on mesoporous supports (SAMMS™), dendrimers, carbon nanotubes, and metalloporphyrinogens to determine how to apply their unique chemical and physical properties for full‐scale remediation. There are many unanswered questions regarding nanotechnology. Further research is needed to understand the fate and transport of free nanoparticles in the environment, whether they are persistent, and whether they have toxicological effects on biological systems. In October 2008, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a fact sheet entitled “Nanotechnology for Site Remediation,” and an accompanying list of contaminated sites where nanotechnology has been tested. The fact sheet contains information that may assist site project managers in understanding the potential applications of this group of technologies. This article provides a synopsis of the US EPA fact sheet, available at http://clu‐in.org/542F08009 , and includes background information on nanotechnology; its use in site remediation; issues related to fate, transport, and toxicity; and a discussion of performance and cost data for field tests. The site list is available at http://clu‐in.org/products/nanozvi . © 2008 Wiley Periodicals, Inc.  相似文献   

15.
The U.S. Army Corps of Engineers (US ACE) used the Triad approach to expedite site characterization of contaminated soil at the Former Small Arms Evergreen Infiltration Training Range in Fort Lewis, Washington. The characterization was designed to determine if surface soils contain significant concentrations of metals, with the focus on collecting sufficient data for determining appropriate future actions (i.e., risk analysis or soil remediation). A dynamic sampling and analytical strategy based on rapid field‐based analytical methods was created in order to streamline site activities and save resources while increasing confidence in remediation decisions. Concurrent analysis of soil samples during the demonstration of method applicability (DMA) used both field portable X‐ray fluorescence (FPXRF) and laboratory methodologies to establish a correlation between FPXRF and laboratory data. Immediately following the DMA, contaminated soil from the impact berm was delineated by collecting both FPXRF data and fixed laboratory confirmation samples. The combined data set provided analytical results that allowed for revisions to the conceptual site model for the range and directed additional sample collection activities to more clearly determine the extent and distribution of soil contamination. © 2004 Wiley Periodicals, Inc.  相似文献   

16.
The U.S. Department of Energy (DOE) is beginning major environmental restoration projects of both active and inactive sites throughout the United States. The problems at the sites include contaminated soils, groundwater and surface waters, structures, and old waste disposal areas. IT Corporation, under the direction of the Office of Independent Cost Estimating (OICE) for DOE, developed a list of environmental problems at the sites and probable cleanup technologies and techniques that could be used. Estimated unit costs were then developed for these cleanup technologies, using available data and references. Some procedures developed were common to many or all cleanup projects. These included site characterization, remedial investigation (RI), feasibility studies (FS), and the closure/post-closure phase. The article will focus on cost estimating of the closure/post-closure phase of a cleanup project. The cost data provided are for budget level or check estimates. Site-specific conditions as well as items peculiar to the environmental industry, such as governmental regulations and community relations, can influence both the cost and duration of a cleanup project.  相似文献   

17.
Isotope applications are gaining acceptance for use in surface water and groundwater investigations, complementing traditional geochemistry and physical hydrology techniques. Recent developments in analytical methodologies and in the understanding of isotope dynamics now allow the use of isotopes to investigate sources and fate of common groundwater contaminants such as chlorinated solvents and petroleum hydrocarbons. Contaminants with unique isotopic signatures may facilitate the determination of contaminant sources in complex plumes. Degradation of chlorinated solvents and some petroleum hydrocarbons impart unique isotopic signatures on both the original contaminant and the degradation product or products that provide verification of degradation. Use of a Rayleigh‐type model may allow determination of degradation extent. Coupled with models of contaminant fate and transport, degradation extent may be useful for determining degradation rates. © 2001 John Wiley & Sons, Inc.  相似文献   

18.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
The Bog Creek Farm CERCLA (Superfund) site in Howell Township, New Jersey, was extensively contaminated, allegedly with wastes from paint manufacturing. The site contained two types of incinerable wastes: contaminated soils and sediments. A remedial investigation and feasibility study (RI/FS) was conducted, leading to a recommendation to treat the most contaminated areas by incineration. This recommendation was converted into the selected approach through the Record of Decision (ROD) mechanism. Contaminants at the Bog Creek Farm site included a wide range of volatiles, semivolatiles, and heavy metals. The incineration approach chosen, therefore, had to remove the organics from the soil without creating additional problems associated with heavy metals emissions. In order to evaluate the incineration problem and develop an advisory conceptual design for its solution, Ebasco Services Incorporated performed extensive characterizations of the material. Such characterizations included performing proximate and ultimate analyses and determining other key physical, chemical, and thermodynamic properties of the soils and sludges. Energy and Environmental Research Corporation (EER) then performed treatability studies in its rotary kiln test incinerator. These treatability studies focused upon the rotary kiln, and the environment required for cleaning the soil. They assumed that contaminants in the vapor phase could be destroyed in the afterburner. Tests were conducted at bed temperatures of 1,000°F, 1,460°F, and 1,800°F. Samples were drawn from the kiln at intermediate times. Combustion regimes were therefore constructed for the treatment of Bog Creek Farm wastes, maximizing organic removal while managing the heavy metals problem. Ebasco then converted the results of the incinerability or treatability studies into an advisory conceptual design. This advisory conceptual design called for a kiln temperature of 1,600°F (bed temperature of 1,200°F) and a solids residence time in the kiln of 40 minutes. Additional data indicated that the afterburner could operate at 1,800°F in order to ensure destruction of the POHCs. Combustion chemistry fundamentals demonstrated that the minimum afterburner temperature required was 1,650°F. Ebasco converted this conceptual design into a performance specification to be used in the bid process, under the management of the U.S. Army Corps of Engineers. The remediation was then put out to bid. Chemical Waste Management was the successful bidder. The incineration was successfully completed by August 1990; the system was then demobilized, as the site was remediated.  相似文献   

20.
Detailed field investigations and numerical modeling were conducted to evaluate transport and fate of chlorinated solvent contamination in a fractured sedimentary bedrock aquifer (sandstone/siltstone/mudstone) at a Superfund site in central New Jersey. Field investigations provided information on the fractured rock system hydrogeology, including hydraulic gradients, bulk hydraulic conductivity, fracture network, and rock matrix, and on depth discrete contaminant distribution in fractures (via groundwater sampling) and matrix (via detailed subsampling of continuous cores). The numerical modeling endeavor involved application of both an equivalent porous media (EPM) model for flow and a discrete fracture network (DFN) model for transport. This combination of complementary models, informed by appropriate field data, allowed a quantitative representation of the conceptual site model (CSM) to assess relative importance of various processes, and to examine efficacy of remedial alternatives. Modeling progressed in two stages: first a large‐scale (20 km x 25 km domain) 3‐D EPM flow model (MODFLOW) was used to evaluate the bulk groundwater flow system and contaminant transport pathways under historic and current aquifer stress conditions and current stresses. Then, results of the flow model informed a 2‐D DFN transport model (FRACTRAN) to evaluate transport along a 1,000‐m flowpath from the source represented as a 2‐D vertical cross‐section. The combined model results were used to interpret and estimate the current and potential future extent of rock matrix and aqueous‐phase contaminant conditions and evaluate remedial strategies. Results of this study show strong effects of matrix diffusion and other processes on attenuating the plume such that future impacts on downgradient well fields under the hydraulic stresses modeled should be negligible. Results also showed futility of source remediation efforts in the fractured rock, and supported a technical impracticability (TI) waiver for the site. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号