首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以箱模型为基本模型,利用陕西省气象台1961—2008年的气象资料,推导出了大气环境容量宏观总量控制修正A值法,并基于修正A值法估算了西安市各区县大气环境容量,新的国家剩余容量。结果表明:西安市除临潼区A值大于国标A值外,其余各区县A值小于国标A值;在新的国家《空气质量标准》的要求下,西安市SO2、NOx、PM10的环境容量值分别为9.552×104 t/a、6.652×104 t/a、9.546×104 t/a;根据全国第一次污染源普查2010年数据库,计算了西安市各区县SO2和NOx理想容量与中低架源排放量的差值及西安市大气中SO2和NOx的剩余容量,碑林区和莲湖区应注意改善中、低架源SO2的排放;新城区、碑林区、莲湖区、雁塔区、阎良区和高陵县应注意改善中、低架源NOx的排放;西安市SO2和NOx没有剩余容量,总体排放量超过环境容量的值分别为2.279×104 t/a和2.336×104 t/a,因此应对SO2和NOx的排放进行总量控制。该研究可为西安市大气污染物排放的总量控制提供科学依据。  相似文献   

2.
天津市大气污染源排放清单的建立   总被引:40,自引:15,他引:25  
通过调研天津市工、农业生产和居民生活的统计资料,研究分析文献报道的各种污染源排放因子,计算出天津市各行业、各区县NOx、SO2、NMVOC、CO、NH3、PM10、PM2.5等污染物的排放量,发展了天津市2003年排放源清单.结果显示,天津市2003年各类污染物质的排放量NOx为1.77×105t,SO2为2.59 ×105t,NMVOC为2.24×105t,CO为1.33×106t,NH3为7.40×104t,PM10为2.52×105t,PM2.5为1.10×105t.从排放源的行业分布来看,燃煤源、汽车移动源、秸秆燃烧源是天津市大气污染物的重要排放源,燃煤源对各污染物的贡献分别为NOx46%,SO284%,NMVOC 1%,CO 58%,PM1018%,PM2.5 24%.火电、水泥、钢铁、炼焦、原油加工等行业依然是重要的工业污染排放源,火电对SO2的贡献为13%,钢铁对SO2的贡献为24%,对CO的贡献为30%.2003年天津市区对NO,、S02、NMVOC、CO等污染物的贡献均高于其它区县,对PM10、PM2.5的贡献也很高;塘沽区对NOx、SO2、NMVOC、CO等污染物的贡献很大,蓟县、武清区、宝坻区对NH3、PM10、PM2.5的贡献很大.  相似文献   

3.
采用排放因子法估算2010年北京市水泥工业颗粒物TSP和气态污染物SO2、NOx、氟化物的排放总量,从而建立了水泥工业大气污染物排放清单,并分析其主要大气污染物排放时空分布特征及对全市总排放量的贡献情况。结果表明:(1)水泥工业NO x污染较为严重,NO x排放占全市总排放量的6.72%;(2)水泥工业作为点源污染,在局部范围内对周围空气及居民有较大的影响;(3)利用ADMSURBAN模型进行大气污染贡献分析,水泥工业TSP排放对环境空气质量贡献0.100~0.169μg/m3(1 h),SO2排放对环境空气质量贡献0.028 5~0.065 2μg/m3(1 h),NO x排放对环境空气质量贡献0.324~0.760μg/m3(1 h),NO x对空气质量影响较大。  相似文献   

4.
淄博市大气污染特征模型模拟及环境容量估算   总被引:3,自引:2,他引:1  
为在我国构建基于"浓度控制、总量控制、质量控制"相结合的大气污染防治新模式,结合国家《重点区域大气污染防治规划(2011-2015年)》及《淄博市环境保护"十二五"规划》的编制工作,利用CALPUFF空气质量模型模拟了淄博市及其周边地区大气污染特征,并基于模型模拟结果采用多目标线性优化方法估算了淄博市SO2、NOx、PM10这3项污染物的环境容量.研究表明,淄博市大气污染受外来污染源影响大,外来污染源对淄博全市SO2、NO2、PM10年均浓度贡献率分别达26.34%、21.23%、14.58%.淄博市各区县之间存在显著的相互影响关系,其中周边区县对张店中心城区的SO2、NO2、PM10年均浓度贡献率分别为35.96%、43.17%、17.69%.淄博市不同区县的空间敏感性差异较大,其中周村区、桓台县、张店区、淄川区单位污染物排放量对城市空气质量的综合影响明显大于其它区县.淄博市要达到《环境空气质量标准》(GB 3095-2012)的要求,SO2、NOx、PM10的环境容量分别仅为8.03×104、19.16×104、3.21×104t.因此,在山东半岛实施区域大气污染联防联控是确保淄博市空气质量达标的必要途径.  相似文献   

5.
上海市机动车发展的大气环境容量   总被引:7,自引:2,他引:7  
研究了上海市机动车和固定源排放对环境中NOx 浓度的贡献率 ,采用ADMS Urban空气质量模型从环境容量角度提出上海市机动车发展的总量控制目标 .2 0 0 2年上海全市NOx 排放总量为 39 7× 10 4t/a ,其中中心城区机动车NOx 排放分担率81% ,浓度贡献率为 86 % .为实现 0 0 8mg/m3 年平均浓度容量控制目标 ,上海市机动车NOx 排放总量应控制在 3 5× 10 4t/a以下  相似文献   

6.
长江流域点源氮磷营养盐的排放、模型及预测   总被引:22,自引:3,他引:22  
通过分析1985~2003年长江流域向河口/东海排放的点源营养盐的时空变化规律,建立长江点源营养盐排放模型,并预测2020年长江流域点源氮磷排放情况.模型基于人口密度、国内生产总值、人均氮磷排放量、以及污水处理率等因子,在99%的置信度上,氮磷模型的方差解释量分别达到92.3%及93.2%.基于此模型预测2020年长江流域点源氮排放量将达到(95 9±6 6)×104t,点源磷排放量达到(12.3±0.6)×104t.此外,研究结果进一步表明,点源营养盐通量仍然是长江输送营养盐总量的主要部分,是影响河口/近海水质的主要因素.  相似文献   

7.
应用MOVES-2014a模型并对其输入参数进行了本地化修正,计算了 2018年渭南市道路移动源污染物的排放因子和排放总量.基于渭南市路网分布和GIS信息及车流分布对污染物总排放量进行了空间和时间分配,建立了 1 km×1 km和l h分辨率的排放清单.结果表明,渭南市机动车排放CO、NMVOCs、NOx、NO2、NO...  相似文献   

8.
珠江三角洲非道路移动源排放清单开发   总被引:46,自引:18,他引:28  
根据收集到的珠江三角洲非道路移动源活动水平数据,采用适合各类非道路移动源污染物排放量的估算方法和排放因子,建立了珠江三角洲地区2006年非道路移动源排放清单.结果表明,珠江三角洲地区2006年非道路移动源排放SO2为6.52×104t,NOx为1.24×105t,VOC为4.54×103t,CO为2.67×104t,PM10为4.51×103t.其中船舶为最大的SO2、NOx、CO和PM10排放贡献源,分别占非道路移动源排放总量的96.4%、73.8%、39.4%和50.5%.在船舶排放源中,SO2、NOx、VOC、CO和PM10排放量的89.8%、81.8%、77.3%、79.5%和81.7%来自货轮和散装干货船.非道路移动源已成为该地区第三大SO2和NOx排放贡献源,分别占珠江三角洲大气污染源SO2和NOx排放总量的8.6%和13.5%.  相似文献   

9.
广东省船舶排放源清单及时空分布特征研究   总被引:12,自引:3,他引:9  
分别采用基于船舶引擎功率和耗油量的排放因子法,估算了广东省地区2010年的船舶排放清单,并选取客货运输吞吐量、航道通航能力因子和港口地理坐标等数据作为权重因子,研究了该地区各类船舶排放的时空分布特征.结果表明,广东省各类船舶在2010年的SO2、NO x、CO、PM10、PM2.5和VOCs排放总量分别为14.6×104t、23.1×104t、3.0×104t、7.9×103t、7.2×103t和9.3×103t.广东省客货运输船舶月排放波动较小;渔业船舶在1月、4月和11月份的排放比例最高.广东省客货运输船舶水域排放集中在西江干线水道和珠江三角洲高等级航道网内,港口排放主要分布在广东省珠江三角洲沿海发达城市地区;渔船港口排放量呈显著的沿海条带状空间分布特征.  相似文献   

10.
我国水泥工业大气污染物排放量估算   总被引:10,自引:2,他引:8  
水泥工业是粉尘,SO2和NOx等多种大气污染物的重要排放源.根据各地水泥工业的工艺现状、活动水平、除尘器的除尘效率和污染物排放因子,估算了1995—2005年我国水泥工业生产过程中排放的粉尘,PM10,PM2.5,SO2,NOx,氟化物和CO等的排放量,并给出了2005年分省区、分工艺的排放清单.结果表明,污染物排放量与水泥活动水平呈正相关.1995年以来,随着水泥产量增加,污染物排放量增长迅速,2005年我国水泥工业排放排放粉尘520.69×104 t,PM10437.24×104 t,PM2.5301.06×104 t,SO2 86.09×104 t,NOx286.67×104 t,氟化物57.72×104t,CO1 987.97×104 t;山东、浙江、江苏、河北和广东等水泥生产大省污染物排放量较大,污染物排放总量占全国总排放量的46.6%,新型干法的推广应用有助于大气污染物的减排.   相似文献   

11.
燃煤工业和生活锅炉(下称燃煤锅炉)是京津冀地区大气污染控制的重点,分析其污染物排放特征对燃煤锅炉的污染控制具有重要意义. 对京津冀地区燃煤锅炉的容量、锅炉种类、除尘方式、实际除尘效率等技术分布信息进行了统计,在此基础上建立了基于技术分布信息的2012年京津冀地区燃煤锅炉大气污染物排放清单,并分析了技术特征对燃煤锅炉大气污染物排放的影响. 结果表明:京津冀地区燃煤锅炉以10 t/h及以下的小容量锅炉为主,主要炉型为层燃炉,除尘方式以湿式除尘及多管旋风除尘为主;2012年京津冀地区燃煤锅炉的SO2、NOx、颗粒物、PM10和PM2.5排放量分别为90.81×104、30.88×104 、31.46×104、14.64×104和8.07×104 t,排放主要集中于10 t/h及以下和35 t/h以上的锅炉;天津、石家庄、保定、唐山是锅炉污染物排放量最大的城市;供热、食品、化工、造纸是燃煤锅炉排放最集中的行业. 京津冀地区不同城市锅炉的容量及行业分布差异明显,各城市对燃煤锅炉应因地制宜采取天然气替代、集中供热等措施,以控制燃煤锅炉的污染物排放.   相似文献   

12.
中国农业面源污染物排放量计算及中长期预测   总被引:17,自引:1,他引:16  
利用第一次全国污染源普查数据,计算了我国内地31个省市自治区农业面源污染排放量,在此基础上,预测了2010—2030年农业面源污染情况.结果表明,2007年,我国农业面源污染的污染物总排放量为1057×104t,其中,COD排放量为825.9×104t,总氮为187.2×104t,总磷为21.6×104t,氨氮为22.4×104t.如果不加大对面源污染的治理力度,2020年前我国农业面源污染有加剧的趋势.在高排放情景下,2030年农业面源污染中COD排放量可能上升到1466.5×104t,面源污染需引起高度重视.目前,东部沿海地区是我国农业面源污染的主要排放区,但未来我国农业面源污染排放的空间分布可能趋于均衡.  相似文献   

13.
采用以单箱模型法为基础的A值法对西安市大气容量进行估算,并将干沉降、湿沉降和化学转化三个消除过程引入模型测算中,借鉴国内外对于大气常规污染物的清除系数的科学研究成果,对研究区域的SO2、NO2、PM10及PM2.5等4项常规污染物的环境容量进行估算。结果表明,执行2012年新的环境质量标准下,西安市SO2、NO2、PM10及PM2.5大气环境容量分别为13.86×104吨/年,9.24×104吨/年、1.62×105吨/年及8.09×104吨/年。  相似文献   

14.
我国钢铁工业一次颗粒物排放量估算   总被引:2,自引:0,他引:2  
针对我国钢铁工业生产工艺以及颗粒物控制技术的分类,建立了一个细化到排放节点的自下而上的颗粒物排放模型.结合我国钢铁工业各地区活动水平以及颗粒物控制技术分布的历史变化趋势分析,利用此模型计算了2006—2012年我国钢铁工业一次颗粒物的排放系数和排放量.模型计算结果显示,2006年以来,我国钢铁工业颗粒物控制水平不断提高,PM_(2.5)、PM_(2.5)~10和PM10的排放系数分别降低了21.2%、19.3%和19.0%.钢铁工业一次颗粒物排放量在2006—2011年间持续增长,2011年TSP排放量为602×104t,PM10排放量为200×104t,PM_(2.5)排放量为124×104t;2012年排放量出现下降,TSP排放量为561×104t,PM10排放量为187×104t,PM_(2.5)排放量为116×104t.2012年我国钢铁工业一次PM_(2.5)排放量中的有组织排放占39.5%,无组织排放占60.5%;除加严有组织源管控之外,减少颗粒物无组织排放,对于钢铁工业颗粒物排放控制也非常重要.我国钢铁工业颗粒物排放量分布不均衡,河北、山东、江苏、辽宁、山西5个省的排放超过全国总排放的50%.  相似文献   

15.
海峡西岸经济区大气污染物排放清单的初步估算   总被引:6,自引:1,他引:5  
以2009年为基准年,结合污染源普查数据、统计年鉴及工业活动、居民生活等多个方面对海峡西岸经济区包括SO2、NOx、PM2.5、VOCs和NH3在内的大气污染物的排放量进行了估算,建立了海西区大气污染物排放清单.结果发现,上述5类污染物基准年的排放量分别为40.67×104、55.84×104、50.57×104、152.26×104和26.18×104t.其中,SO2、NOx及PM2.5的排放主要来自电厂,占排放总量的比例分别为25.58%、34.89%和38.75%;VOCs和NH3的主要排放源分别来自植被排放和养殖业,其贡献量分别为49.12%和47.07%.采用GIS对排放清单进行网格化处理,得出SO2、NOx及PM2.5的高排放强度区域与固定源的空间分布较为一致.此外,结合国家和地方"十二五"发展规划,采用情景分析方法估算了2015年海西区大气污染物的排放清单.与基准年相比,SO2、NOx和NH3的排放量呈下降趋势,PM2.5和VOCs的排放量呈大幅度增加.基准年排放清单的不确定性分析显示,VOCs排放估算的不确定度最大,为225%.  相似文献   

16.
科学核算大气环境容量,对于合理确定污染物总量控制指标,进而实施大气污染管控措施、治理区域大气污染问题有重要意义.以河谷城市兰州市中心城区为研究区域,利用WRF模式模拟了研究区域的边界层高度及混合层平均风速,并根据地形条件,从污染气象角度给出了扩散单元面积,利用A值法(A为地理区域性总量控制系数)计算兰州市中心城区SO2、NOx及VOCs的大气环境容量;同时,将兰州市中心城区2016年SO2和NOx的排放总量与SO2和NOx的环境容量进行对比,结合区域环境质量监测资料说明大气环境容量设置的合理性.结果表明:①兰州市中心城区的A值具有季节性变化特征,其在春、夏两季较大,在秋、冬两季较小,春、夏两季A值较大的主要原因是边界层高度及边界层内的平均风速较大,而冬季则相反.②兰州市中心城区SO2、NOx和VOCs的大气环境容量分别为4.05×104、1.81×104和5.44×104 t/a.③2016年SO2的实际年排放量(1.62×104 t)未超过大气环境容量限值(4.05×104 t),尚有余量(2.43×104 t),这与兰州市2016年4个环境空气质量监测点ρ(SO2)年均值均达到GB 3095-2012《环境空气质量标准》二级标准的现状一致;NOx的实际年排放量(3.16×104 t)已超过大气环境容量限值(1.81×104 t),无环境容量(-1.35×104 t),这与兰州市2016年4个环境空气质量监测点ρ(NOx)年均值均超过GB 3095-2012二级标准值的现状一致.研究显示,采用A值法计算的兰州市大气环境容量符合区域污染扩散特征.   相似文献   

17.
海峡西岸地区人为源大气污染物排放特征研究   总被引:2,自引:3,他引:2  
黄成 《环境科学学报》2012,32(8):1923-1933
采用以"自下而上"为主的方法建立了2007年海峡西岸地区的人为源大气污染物排放清单.计算结果显示,海西地区人为源SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为69.5×104、96.1×104、413.1×104、93.9×104、40.6×104、85.0×104和28.5×104t.电厂和工业燃烧设施分别占SO2排放的48%和39%,以及NOx排放的51%和25%.水泥、砖瓦等制造过程贡献了约51%的PM10排放和36%的PM2.5排放.秸秆燃烧、加油站和涂料等VOCs面源分别占到其排放总量的27%、15%和4%.NH3的主要排放源为畜禽养殖和氮肥施用等农业部门,占到总排放量的89%.海西地区的单位面积大气污染物排放量仅相当于长三角地区的25%左右,略高于全国平均水平.该地区人为源和天然源VOCs排放比重分别占56%和44%,人为源VOCs排放比重低于全国大部分地区.海西大气污染高排放地区主要集中在沿海一带,以泉州、潮汕、福州和温州等地区为主,建议"十二五"发展过程中,重点关注上述高排放地区,限制重点排放源的发展,开发低耗能、低污染的发展模式.  相似文献   

18.
通过对阳泉地区酸雨频率、发生时间与降雨成分及其变化分析,以及与环境空气SO2、NOx监测数据时空变化对比,分析阳泉市区点源、煤矸石山等污染源排放、治理、减排及其变化情况,得知该地区酸雨频率的变化主要与矸石山、机动车及低架点源酸性污染物排放量相关,同时高架点源排放的酸性污染物是影响市区空气质量的主要因素,而不是酸雨频率变化影响的主要因素。  相似文献   

19.
根据水泥工业大气污染物排放的数学模型;测算2005年-2011年中国水泥工业二氧化碳(CO2)、氮氧化物(NO2)、二氧化硫(SO2)、颗粒物(PM)和氟化物(F)等污染物排放量,分析节能减排的效果并提出解决问题的对策。结果表明:水泥工业CO2排放量逐年增长,并且与水泥产量和单位产品综合能耗呈线性关系;原料煅烧和能源利用过程CO2排放量分别占56%和44%;单位水泥产品CO2排放强度由0.68 t·t-1下降到0.58 t·t-1,相当于每年节约标准煤682×104t、减少CO2排放共计1.03×108t。NO2排放量分别是SO2、PM、F的4、7、160倍。发展新型干法技术、建设烟气脱硝装置、协同处置固体废物是水泥工业未来节能减排的发展方向。  相似文献   

20.
白银市二氧化硫目标控制点选择与总量控制研究   总被引:2,自引:0,他引:2  
针对白银市SO2空气污染较严重并日益加重的情况,笔者引入总量控制方法,谋求从总体上控制白银市SO2大气污染,达到该区空气质量的改善.研究分析表明,点源占总排放量的88.65%,在44个点源中,只需对20个点源进行削减;为了实行质量目标总量控制,应以控制点源排放为主,并且在点源中,只需要控制部分重点点源,就可以从根本上控制SO2污染.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号