首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
对混合菌接种的双室微生物燃料电池加载磁场强度为175 mT的稳恒磁场,利用电化学交流阻抗等电化学分析方法,考察了在磁场作用下微生物燃料电池(MFC)产电性能的变化,分析了磁场对MFC各部分内阻的影响。加载磁场使已启动完成的MFC的产电明显增强,开路电压提高了10%。加载磁场后最大功率密度为2.08 W/m2,大于加载前的1.58 W/m2,表观内阻由170Ω降至80Ω。电化学阻抗谱分析确定了阳极、阴极和全电池的等效电路模型,拟合结果发现阳极极化内阻约为5Ω。加载磁场使MFC的阴极极化内阻由74.98Ω降至56.73Ω。  相似文献   

2.
为研究铁氰化钾对双室微生物燃料电池(MFC)阴极性能的改善效果,以碳毡和碳棒作为复合电极材料,乙酸钠为阳极电子供体,分别以氧气、铁氰化钾和氧气交替作为阴极电子受体.通过测定使用铁氰化钾作阴极电极液之前和之后的曝气阴极MFC的功率密度及极化曲线,比较曝气阴极MFC的内阻、开路电压(OCV)和最大输出功率的变化情况.实验结果表明,当以铁氰化钾作为MFC阴极电子受体时,MFC的内阻、开路电压和最大输出功率分别为24.2 Ω、744.2 mV和33.7 W/m3.曝气阴极MFC在采用铁氰化钾作电极液对阴极性能进行改善之前和改善之后的内阻由77.2 Ω降低到40.1Ω,OCV和最大输出功率分别由517.9 mV和2.1 W/m3提高到558.2 mV和4.4 W/m3.研究表明,铁氰化钾本身不仅具有优良的接受电子的能力,而且对电极材料(碳毡和碳棒)的电化学性能具有明显的改善作用,使得使用铁氰化钾之后的曝气阴极MFC的产电性能有了明显且持久性的提高.  相似文献   

3.
构建了以乙酸钠为阳极基质、Cu~(2+)为阴极电子受体的双室微生物燃料电池(MFC),考察了该MFC处理含铜废水的效果及Cu~(2+)浓度对MFC产电性能的影响。通过改变阴极液中CuSO_4的质量浓度(20~130mg/L),测试了MFC运行过程中的输出电压、输出功率密度、内阻、Cu去除率等指标。结果表明:Cu~(2+)可作为MFC的阴极电子受体;在外电路电阻为1 000Ω的条件下,Cu~(2+)质量浓度为130mg/L的MFC性能最佳,其稳定输出电压为0.33V、最大输出功率密度为114.42mW/m~2,内阻为231.62Ω,最高Cu去除率为84.59%;通过X射线衍射测试发现,阴极还原产物为Cu_2O。  相似文献   

4.
构建双室微生物燃料电池(MFC)装置,研究了分别以乙酸钠(NaAc)作单一燃料和乙酸钠+邻苯二甲酸酯(PAEs)作混合燃料条件下,MFC的产电性能及其对邻苯二甲酸酯的去除效果。结果显示,微生物燃料电池对邻苯二甲酸酯类废水的化学需氧量(COD)的总去除率可达89%~94%,对邻苯二甲酸酯的去除率均在70%以上。以2 g·L~(-1)NaAc+10 mg·L~(-1)PAEs作混合燃料时,MFC获得最大(面积)功率密度58.78 mW·m~(-2),电池内阻213.50Ω。实验结果表明,MFC能够利用高浓度邻苯二甲酸酯作燃料在实现高效降解的同时稳定地向外输出电能这为环境激素类难降解有机物的高效低耗处理提供了一种新的研究思路。  相似文献   

5.
考察了氧化石墨烯(GO)修饰活性炭(AC)空气阴极(AC-GO阴极)对微生物燃料电池(MFC)产电性能以及有机物去除率的影响。实验结果表明,向AC阴极中掺杂一定量的GO可以降低阴极的内阻,提高阴极电化学反应速率。其中,GO掺杂量为0.5 mg·cm-2的AC-GO0.05阴极性能最好,该AC-GO0.05阴极MFC体系的最大功率密度(Pmax)为767 m W·m-2,是空白AC阴极体系Pmax(459 m W·m-2)的1.7倍,化学需氧量(COD)去除率和库伦效率(CE)均明显高于空白AC阴极体系。  相似文献   

6.
尹航  胡翔 《环境工程学报》2013,7(2):608-612
微生物燃料电池在处理废水的同时可以产生电能,有希望同时解决废水再利用和能量再产生的问题。采用单室无膜空气阴极微生物燃料电池,处理模拟生活污水,探讨MFC处理模拟废水的效果。研究了以碳布(MFC1)、碳布负载碳纳米管(MFC2)、碳纳米管(MFC3)和泡沫镍(MFC4)作为4种不同的阳极材料,对MFC系统的启动、内阻和产电特性进行比较。结果表明,4种不同阳极MFC在水力停留时间24 h的条件下,对COD有很好的去除作用,其中MFC2的COD去除效率最大,为91.4%。在不影响MFC系统处理废水效果的前提下,实验得到4种阳极MFC系统中MFC2具有最小的内阻,为173.7Ω;并且其功率密度也大于其他3种MFC,达到401.2 mW/m2。  相似文献   

7.
通过构建空气阴极型双室微生物燃料电池,研究了以500 mg/L苯胺作为唯一燃料以及苯胺和不同底物共基质时MFC对苯胺的降解特性及MFC的产电性能。结果表明,在外电阻1 000Ω,以500 mg/L苯胺为唯一燃料以及500 mg/L苯胺分别和500 mg/L乙酸钠,葡萄糖和可溶性淀粉作为共同基时的MFC运行周期分别为3、3.4、4.6和5 d;最大输出电压分别为273、450、428和380 m V;输出功率分别为142、225、201和160 m W/m2。苯胺去除率分别为68%、85.8%、71%和65%。内阻分别为931、524、564和751Ω,COD去除率分别为68%、85%、72%和65%。库伦效率分别为1.8%、7.9%、6.6%和4.5%。MFC可以使用苯胺作为唯一燃料,且当添加的基质不同时,MFC产电性能以及苯胺降解状况有所不同。利用MFC可以使苯胺高效快速降解的同时实现稳定的电压输出。  相似文献   

8.
利用混合菌种(厌氧污泥)和单一菌种(Geobacter sulfurreducens)以不同接种方式搭建单室土壤微生物燃料电池(MFC)反应器,考察不同MFC的产电性能及其对Cd污染土壤的修复效果。结果表明,将混合菌种集中接种于阳极碳毡表面的MFC1运行效果最佳,其在2d即可完成启动,输出电压稳定在0.225V左右,最大功率密度为35.00MW/m2,内阻为515.5Ω。土壤修复效果与MFC产电性能相关,MFC1产电性能最佳,因此土壤修复效果最好,稳定运行30d后阴极Cd富集率最高,达19.02%  相似文献   

9.
为考察藻种类及阴极材料对藻阴极型微生物燃料电池性能的影响,以微藻及水绵为阴极生物,分别采用碳毡,碳纸,载铂碳纸为阴极材料,构建了微生物燃料电池。结果显示,以碳毡作为阴极材料时,2种藻阴极微生物燃料电池最大功率密度均高于以碳纸为阴极材料时相应的功率密度。采用载铂碳纸为阴极材料、天然湖水为阴极液,微生物燃料电池最大功率密度分别达到165.1 m W/m2(微藻阴极)和119.9 m W/m2(水绵阴极)。电化学测试表明,藻类生长形态影响了阴极的电化学特征,进而影响到了微生物燃料电池的性能。藻阴极MFC长期运行时,膜污染是藻阴极微生物燃料电池功率密度下降的关键因素之一。SEM-EDS分析显示,膜两侧污染主要原因分别是微生物生长和磷酸盐晶体沉积。  相似文献   

10.
构建了以二沉池剩余污泥厌氧发酵上清液为阳极底物的微生物燃料电池(MFC),考察了电池的产电性能、污染物去除效率及阳极微生物种群特征。结果表明,厌氧发酵污泥MFC作为污泥资源化的一种新途径,具有可行性。在厌氧发酵的预处理条件下,MFC体系稳定运行期间输出电压最高可达0.65 V,最大功率密度达86.89 m W·m~(-2),库伦效率为(5.12±0.5)%;与此同时TCOD去除率为(50.6±3.5)%。污泥在厌氧发酵阶段产生大量挥发性脂肪酸(VFAs),它们作为产电微生物易于摄取的阳极底物,能够促进污泥中有机质的去除,进而提高污泥MFC的产电效果。由阳极微生物群落结构可推断:产电和非产电细菌具有协同作用,共同维持MFC的稳定运行。  相似文献   

11.
微波污泥上清液为燃料的微生物燃料电池内阻分布   总被引:1,自引:1,他引:0  
实验采用单室无膜悬浮阴极微生物燃料电池(MFC),考察了微波污泥上清液为燃料的MFC(MSMFC)的内阻组成。研究表明,当未投加氯化钠时,MSMFC内阻为486.13Ω。当投加100mmol/L的氯化钠时,内阻迅速下降为207.18Ω。而投加量进一步增加时,内阻变化不明显。当阳极面积从4cm2增加到8cm2时,MSMFC内阻从387.34Ω迅速下降到293.96n。而当阳极面积增加到24cm。时,MSMFC内阻变化不明显。但当阳极面积增加到60cm2时,MSMFC内阻下降了38.4%。当阴极面积从24.87cm2增加到49.74cm2时,MSMFC内阻减少了40.4%(从545.72Ω减少到220.56Q)。MSMFC中阳极内阻占主要部分,其次为阴极内阻,电解液电阻最小。随着阴阳极面积比的增加,阴阳极电阻比例减少,说明控制阴阳极面积比可以调整系统内阻的分配。  相似文献   

12.
铁碳布空气阴极微生物燃料电池的产电性能   总被引:1,自引:1,他引:0  
使用铁代替铂作为阴极催化剂,制作含铁碳布空气阴极并构建单室MFC(Fe-C-ACMFC)。以乙酸钠为燃料,通过稳态放电法和循环伏安测试等测试手段,分析了不同铁含量对Fe-C-ACMFC产电性能的影响以及性能最优Fe-C-ACM-FC的连续运行稳定性。结果表明,随着铁含量的增加,Fe-C-ACMFC启动期开路电压(OCV)逐步提高,达到峰值后,随着铁含量的增加而降低;同样,Fe-C-ACMFC极化性能和功率密度等产电性能也随铁含量的增加先升高再降低;当铁含量为0.7 mg/cm2时,MFC的产电性能最优,最大开路电压为593 mV,表观内阻为89Ω,最大功率密度达到12 907 mW/m3,并且经循环伏安测试,电池放电容量几乎没有变化,表明Fe-C-ACMFC的性能比较稳定,能够长期运行。由于铁催化剂价格远远低于铂催化剂,因此,铁碳布空气阴极MFC更利于推广应用。  相似文献   

13.
为了降低构建微生物燃料电池(MFCs)的成本,比较了以碳毡和碳布作为阴极材料,在阴极利用功能微生物作为催化剂时电池的产电性能。结果表明,两电池启动时间基本相同,20 d左右达到稳定,但稳定期碳布作阴极的电池电压比碳毡作阴极的电池电压高出了60 mV左右。碳毡和碳布作阴极时,电池在10 d和20 d的最大功率密度分别由10.24和11.14 mW/m2提升到了18.18和30.15 mW/m2,相应内阻则分别由1 000和600Ω降到了250和200Ω。循环伏安法(CV)显示两材料单独做电极时氧化还原情况相似,扫描电镜(SEM)观察到两者不同表面特性导致碳毡对污泥附着强于碳布,进而使氧气传递受到限制,产电降低。  相似文献   

14.
采用单室沉积型微生物燃料电池(SMFC)处理垃圾渗滤液与沉积污泥,考察电池的产电性能及污染物去除效果。SMFC输出电压呈周期性变化趋势,最大输出电压251 m V,最大功率密度为10.35 mW·m~(-2),功率密度随电流的增加先增大后减小,燃料电池内阻为2 653Ω。COD、氨氮去除率分别达96.18%和80.60%。SMFC的平均输出电压随污染物的降解呈波浪型上升趋势。MLSS、MLVSS去除率分别为24.40%和30.32%。实验结束后,MLVSS/MLSS的比值由0.70降至0.65,在SMFC产电过程中,污泥中的有机物得到有效降解。因此,SMFC可实现污水净化、污泥减量及产电一体化的效果。  相似文献   

15.
回流式无膜生物阴极微生物燃料电池脱氮   总被引:2,自引:0,他引:2  
为有效提高脱氮效率、降低MFC运行成本,设计了一种新构型回流式无PEM膜的生物阴极微生物燃料电池,处理生活污水,回收电能。研究了该系统的启动情况及稳定运行时的污水脱氮效果和产电性能。结果表明,系统稳定运行后,输出电压0.53 V,反应器内阻406.8Ω,最大功率密度201.9 mW/m3。连续进水、停留时间12 h、回流比为1及阴极连续曝气条件下,COD去除率85%以上,氨氮去除率93.94%,总氮去除率44.96%,总氮去除较作参比的A2/O系统提高8.17%。  相似文献   

16.
构建以污水处理厂二沉池污泥接种的双阴极微生物燃料电池(MFC),用循环伏安法(CV)、交流阻抗法(EIS)表征了MFC启动阶段的电化学特性。结果表明:经过3个周期的运行,输出电压稳定,反应器启动成功,启动阶段厌氧-好氧和厌氧-缺氧部分输出电压的最大值分别为175和336 m V。缺氧阴极,厌氧阳极电极生物膜CV检测中出现氧化还原峰,随着启动时间的增加,其峰值电流逐渐增大;而好氧阴极电极生物膜的CV检测结果中未出现明显的氧化还原峰。悬浮污泥的CV检测结果中出现了成对的氧化还原峰,表明生物代谢过程中有电子中介体产生。EIS结果说明电极的欧姆内阻和扩散内阻基本保持不变,极化内阻在不断减小,很好地反映了产电微生物在电极上富集的过程。启动成功后缺氧、厌氧和好氧电极的极化内阻值分别为2.86、2.33和57.64Ω,好氧阴极极化内阻值较大,表明其电极生物膜催化能力较弱。  相似文献   

17.
考察了MnO_2-r-GO阳极对微生物燃料电池(MFC)的产电性能和体系有机质去除率的影响。实验结果表明,MnO_2-r-GO极的电荷转移内阻(Rct)由145.9Ω降低到14.8Ω。运行稳定后,MnO_2-r-GO阳极体系与空白碳布阳极体系相比,输出电压由200 m V增大到550 m V;最大功率密度(Pmax)由192.2 m W·m-2增大到761.4 m W·m-2,表观内阻由424.6Ω降低到141.4Ω;体系的COD去除率由83.6%增大到89.6%,库伦效率(CE)由19.8%增大到39.5%。  相似文献   

18.
脱氮副球菌YF1微生物燃料电池生物阴极脱氮和产电   总被引:1,自引:0,他引:1  
以脱氮副球菌YF1构建纯种生物阴极微生物燃料电池(microbial fuel cell,MFC)进行脱氮和产电机理的研究。研究结果发现,阴极碳氮比、pH值对产电和脱氮效率有明显影响。当MFC的阴极运行条件pH值为8.0,碳氮比为20时,运行时间15 h时,脱氮率高达100%,输出电压为150 mV。上述结果表明,微生物燃料电池运行过程中,细菌降解硝酸根的机理为将硝酸根还原为N2或者直接将其作为自身的营养物质而利用。循环伏安(CV)与扫描电镜(SEM)的结果表明,在微生物燃料电池运行中,副球菌YF1通过接触导电作为产电的电子供体。  相似文献   

19.
为探查不同电子受体产电性能及对阳极微生物群落的影响,研究了3种电子受体(铁氰化钾、曝气阴极、过硫酸钾),构建了双室榨菜废水微生物燃料电池系统(microbial fuel cells,MFCs),实现了污水处理和能量回收的双重目的,探讨了不同电子受体(铁氰化钾、曝气阴极、过硫酸钾)对榨菜废水MFCs产电性能及阳极微生物群落的影响。结果表明:在产电性能方面,当过硫酸钾作为阴极电子受体时,电池输出电压、库仑效率、功率密度均优于另外2种常用阴极电子受体(铁氰化钾和氧气);在500Ω的外接电阻间歇运行的条件下,其输出电压、库仑效率、功率密度分别为802 mV、(33±1.6)%、697 mW·m~(-2)。阳极生物16S rRNA基因测序分析表明,水解发酵菌为榨菜废水微生物燃料电池阳极核心菌群,铁氰化钾、氧气和过硫酸钾MFCs阳极微生物菌群相对丰度分别为64.3%、63.6%和75.51%,包括Lentimicrobium、Synergistaceae、Sphaerochaeta、Anaerolineaceae、Draconibacteriacea菌属。阴极电子受体不同的MFCs的阳极微生物群落核心菌群类似,但是丰度有所不同。势差较大的电子受体(过硫酸钾)微生物群落多样性和丰富度较高,产电和污染物去除效果较好。  相似文献   

20.
炼油废水微生物燃料电池启动及影响因素   总被引:1,自引:0,他引:1  
以炼油废水为碳源,构建双室填料型微生物燃料电池,考察接种液、外接电阻等电池启动条件,以及电导率、pH值和缓冲溶液强度等溶液性质对电池产电性能的影响。利用微生物燃料处理炼油废水,COD去除率(52±4)%,含油量去除率(81.8±3)%;利用废水中存在的原生菌即可启动电池,但启动期长,外加接种液可快速启动电池;启动时外接电阻的大小对电池稳定运行后的输出功率有明显影响,对电池内阻影响相对较小,当启动外接电阻为2 000Ω,电池输出功率最大,为288 mW/m3;随阳极溶液电导率电池增大,电池内阻降低,输出功率升高;pH值变化对电池阳极电势影响较大,进而影响电池输出,当溶液pH为9时,电池输出电压最大(388 mV),pH过高或过低均不利于电池产电;随着缓冲强度的增大,电池输出电压增大,且PBS缓冲强度的增大可从电导率增大和改善质子传递条件两方面提高电池的输出功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号