首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以发酵床废弃垫料和秸秆为原料,采用限氧热解法制备不同温度(300、400和500℃)下的垫料生物炭(D300、D400和D500)和秸秆生物炭(S300、S400和S500),通过X-ray能谱仪、扫描电镜、傅里叶变换红外光谱仪等手段表征其物理化学性质,研究不同吸附时间、Cd~(2+)浓度和初始pH下垫料生物炭对Cd~(2+)的吸附性能,并与秸秆生物炭进行比较。结果表明,D300和D400的吸附过程较符合准二级动力学模型,D500的吸附过程更符合颗粒内扩散模型,吸附时间以30 h为宜;垫料生物炭对Cd~(2+)的等温吸附实验更符合Freundlich模型,400℃制备的垫料生物炭对Cd~(2+)的吸附效果最好;D300和D400对Cd~(2+)的吸附能力受pH的影响较大,D500对Cd~(2+)的吸附能力受pH的影响较小,pH在4.5~7.5之间吸附效果较好。秸秆生物炭吸附Cd~(2+)到表观平衡所用的时间在20 h左右,而最大吸附量比垫料生物炭多2.727 mg·g-1。  相似文献   

2.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

3.
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd~(2+)的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd~(2+)吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd~(2+)浓度为100 mg·L~(-1),温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L~(-1)条件下,改性玉米秸秆炭和花生壳炭对Cd~(2+)的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd~(2+)的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd~(2+)后,可用NaOH溶液进行解吸,解吸4次后,对Cd~(2+)仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g~(-1)。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd~(2+)的吸附材料。  相似文献   

4.
将谷売生物炭用酸改性后负载磁性Fe_3O_4,得到一种新的吸附材料(BC~Fe)。通过单因素吸附实验,研究了时间、pH、添加量、浓度以及温度等参数对BCTe吸附废水中Pb~(2+)的影响,并对其进行比表面积及傅里叶红外光谱分析,探讨该磁性生物炭对Pb~(2+)的吸附机理。结果表明对Pb~(2+)的吸附能在2 h内基本达到平衡。在Pb~(2+)溶液初始浓度为100mg·L~(-1),pH=5.0温度为25℃,分別添加0.1g和0.15 g的BC-Fe于50 mL Pb~(2+)溶液中,单位质量的BC-Fe对溶液中Pb~(2+)的吸附量分别为40.6 mg·g~(-1)和33.2 mg·g~(-1)去除率分别为81.3%和99.9%。该吸附过程符合拟二级动力学模型,理论平衡吸附量为43.9 mg·g~(-1)。用Langmuir等温吸附方程能够很好地描述其吸附行为;热力学研究表明对Pb~(2+)的吸附过程是自发的吸热过程。  相似文献   

5.
以柳木屑和花生壳为原料,采用预浸渍—热解法制备原始柳木屑生物炭(FMC)、原始花生壳生物炭(PSC)、CaCl_2改性的柳木屑生物炭(Ca-FMC)和CaCl_2改性的花生壳生物炭(Ca-PSC)。在对生物炭的结构和组成进行表征的基础上,研究了CaCl_2改性和pH对生物炭吸附Pb~(2+)的影响,并研究了Ca-FMC和Ca-PSC吸附Pb~(2+)的吸附等温模型和动力学过程。结果表明,CaCl_2改性可显著提高原始生物炭对Pb~(2+)的吸附能力。Ca-FMC和Ca-PSC对Pb~(2+)的吸附符合Langmuir吸附等温模型,饱和吸附量可分别达到54.32、32.80mg/g。Ca-FMC和Ca-PSC对Pb~(2+)的吸附动力学过程遵循准二级动力学方程,准二级动力学速率常数分别为0.01、0.03g/(mg·h)。  相似文献   

6.
在150 m L溶液中,稻秆用量为5 g,硝酸浓度为10%,稻秆颗粒度为20目,改性温度为80℃,改性时间为3h,制备得到硝酸改性稻秆吸附剂。详细探讨了用该吸附剂处理含Pb~(2+)废水的影响因素:吸附剂用量、Pb~(2+)初始浓度、溶液pH值、吸附时间和吸附温度等对Pb~(2+)吸附率的影响,并进一步通过正交实验及对比实验得出处理200 m L,初始浓度为300mg·L-1的含Pb~(2+)废水的最佳吸附工艺为:吸附剂用量为4 g,pH值为6,吸附时间为3 h,吸附温度为20℃,在此工艺条件下,对Pb~(2+)的吸附率达到94.31%,吸附量为14.15 mg·g~(-1)。  相似文献   

7.
为了解狭叶香蒲(Typha angustifolia L.)活性炭的吸附性能及其机理,采用磷酸一步活化法制备了狭叶香蒲活性炭,并对其理化性质进行了表征;通过静态实验,研究了溶液起始pH、Cd~(2+)和Pb~(2+)浓度、吸附时间、温度、活性炭剂量对狭叶香蒲活性炭吸附水溶液中Cd~(2+)和Pb~(2+)的影响。狭叶香蒲活性炭对Cd~(2+)和Pb~(2+)的吸附量随溶液起始pH与温度的增加而增加,吸附平衡时间约为10 min;热力学分析表明,吸附过程自发而且吸热,吸附动力学实验结果符合拟二级动力学模型,Langmuir吸附等温模型能更好地拟合狭叶香蒲活性炭对Cd~(2+)的吸附,Pb~(2+)的平衡吸附量与Freundlich模型的拟合性更好。25℃条件下,由Langmuir线性模型拟合得到的Cd~(2+)和Pb~(2+)最大吸附量Qm分别为83.33和116.28 mg/g。狭叶香蒲活性炭的理化性质分析表明,活性炭表面凹凸不平、多孔,比表面积为780.42 m2/g、孔容23.29 m L/g、平均孔径3.14 nm;活性炭含有羟基、磷酸基、CC键等,等电点为3.3。结果表明,狭叶香蒲活性炭是Cd~(2+)和Pb~(2+)吸附的有效吸附剂,吸附过程包括静电吸附、离子交换等。  相似文献   

8.
以污水厂污泥为主要原料,掺杂不同量的废旧碱性电池电极材料,采用ZnCl_2活化法制备出废旧碱性电池-活性污泥炭,表征分析污泥炭样品的碘吸附值、BET、FT-IR、SEM-EDX、XRD和Zeta电位,并进行污泥炭Cd~(2+)吸附实验。结果表明,电池材料掺杂量为25%时,改性污泥炭吸附性能最优,碘吸附值和比表面积分别达到543.0 mg·g~(-1)和426.5 m~2·g~(-1),中孔孔径集中在3~4 nm左右,Zeta电位为-16.30 m V;对比纯污泥炭,废电池-污泥炭吸附金属离子性能更优,Cd~(2+)吸附量增加了近60%,而ZnCl_2活化剂用量减少了40%;回归分析发现,准二级动力学和Langmuir等温方程式适用于描述废电池-污泥炭对Cd~(2+)的吸附行为。  相似文献   

9.
棘孢曲霉(Aspergillus aculeatus)对Pb~(2+)和Cd~(2+)的吸附特征   总被引:3,自引:0,他引:3  
为了研究棘孢曲霉(Aspergillus aculeatus)对溶液中Pb~(2+)和Cd~(2+)吸附过程的特征,分别从动力学、热力学和吸附等温线三方面进行了实验,同时还研究了pH、温度、时间、重金属离子起始浓度和吸附剂用量对吸附过程的影响。等温吸附过程可以用Langmuir方程来描述。在实验设定条件下,棘孢曲霉对Pb~(2+)和Cd~(2+)最大吸附量分别为71.2 mg/g和59.8 mg/g;动力学实验数据很好的符合二级动力学方程,吸附达到平衡的时间为3 h;热力学实验数据显示该吸附过程为自发的、吸热的过程。  相似文献   

10.
利用机械球磨的方法可以提高天然黄铁矿的活性,通过XRD和TEM对机械球磨后黄铁矿粉末的表面形态和物理性质进行表征。通过批实验的方法探讨在不同的pH,不同的球磨黄铁矿用量,不同的反应时间和温度的条件下黄铁矿对Cr~(6+),Cd~(2+)和Pb~(2+)的去除效果。研究结果表明,金属离子的吸收受到pH的影响,随着pH的升高,3种金属离子的吸附趋势出现了很大的不同。并且在分析pH对反应效果的影响时,需要考虑金属生成沉淀时的pH。同时,随着反应时间和温度的增加,3种金属离子的吸收量都有不同程度的升高。通过实验比较,球磨黄铁矿对Cr~(6+),Cd~(2+)和Pb~(2+)的去除能力大小为Pb~(2+)Cr~(6+)Cd~(2+)。纳米级黄铁矿与Cr~(6+),Cd~(2+)和Pb~(2+)的反应过程符合准二级动力学方程。  相似文献   

11.
选取小球衣藻(Chlamydomonas microsphaera)、铜绿微囊藻(Microcystis aeruginosa)、钝顶螺旋藻(Spirulina platensis)和四尾栅藻(Scenedesmus quadricauda)等4种微藻,通过室内模拟实验,对水体中的Cd~(2+)进行吸附,并对吸附Cd~(2+)的微藻分别采用去离子水、0.2 mol·L~(-1)Ca Cl2与研磨处理,测定Cd~(2+)的解脱量,研究活体微藻对重金属离子的富集特征与机理。结果表明:4种活体微藻均对水体中Cd~(2+)有较强的富集能力,在Cd~(2+)初始浓度为10 mg·L~(-1)、溶液pH为7.0的实验条件下,小球衣藻富集量可达76.34 mg·g~(-1),铜绿微囊藻、钝顶螺旋藻和四尾栅藻富集量分别为24.78、15.28和9.85 mg·g-1,说明微藻是良好的重金属吸附剂;4种活体微藻对Cd~(2+)的富集特征均符合准二级动力学方程(R20.99),反映出活体微藻对Cd~(2+)的富集主要是一种化学行为;活体微藻对Cd~(2+)的富集主要是离子交换形式的化学吸附,富集比例均在60%以上,其中小球衣藻最高,达86.51%。除化学吸附外,还包括物理吸附与生物吸收,生物吸收所占富集比例为6.75%~18.96%,而物理吸附量最少,为3.02%~14.63%。  相似文献   

12.
用悬浮聚合法合成了甲基丙烯酸甲酯(MMA)与丙烯酰胺(AM)的共聚物PMMA/AM,再经羟胺改性制备了含羟肟酸功能基的改性PMMA/AM/HOA树脂。通过红外光谱(FTIR)和热重分析(TG)对PMMA/AM/HOA树脂的结构和稳定性进行了表征。以PMMA/AM/HOA为吸附剂,考察了温度、吸附时间、pH值和金属离子浓度等条件对Hg~(2+)、Cd~(2+)两种金属离子吸附性能的影响。结果表明,改性树脂对Hg~(2+)、Cd~(2+)具有良好的吸附能力,其实验吸附量分别为0.822和0.384 mmol·g~(-1)。改性树脂对Hg~(2+)和Cd~(2+)的吸附过程符合拟二级动力学方程,25℃时其二级动力学吸附速率常数分别为5.301×10~(-2)和3.582×10~(-2)g·(mmol·min)~(-1);改性树脂对Hg~(2+)和Cd~(2+)的吸附量随温度的升高有所增大,吸附过程符合Langmuir和Freundlich吸附等温式。  相似文献   

13.
以香菇菌粉作为生物吸附剂,研究了其对Pb~(2+)吸附的最优化条件。试验研究了菌粉粒度、吸附时间、pH、Pb~(2+)初始浓度和菌粉投加量5个影响因子。结果表明,香菇菌粉对Pb~(2+)的最佳吸附条件为菌粉选择粉碎机磨碎的菌柄,吸附时间30min,pH=6~7,Pb~(2+)初始质量浓度20 mg/L,菌粉投加量0.1g。  相似文献   

14.
采用海藻酸钠与改性聚丙烯腈基碳纤维(PAN-CF)制作复合材料吸附去除水溶液中的Cd~(2+),考察不同吸附时间和溶液pH对Cd~(2+)吸附效果的影响。结果表明,改性后PAN-CF的表面官能团增加,表面能提高,相比于未改性PAN-CF制备的复合材料,改性PAN-CF能够缩短复合材料对Cd~(2+)的饱和吸附时间,增加Cd~(2+)饱和吸附量,随着溶液pH的升高,复合材料对Cd~(2+)的吸附量呈先增加后下降的趋势,pH=6时Cd~(2+)的吸附量最大,为162.8mg/g。  相似文献   

15.
利用尿素和乙二胺四乙酸钠盐通过一步法低温固相裂解合成了二维纳米碳氮材料(2-D CN_x),实现了对水中重金属离子的吸附去除。系统地研究了2-D CN_x对水中重金属离子Cd~(2+)、Pb~(2+)和Cu~(2+)的吸附性能,其吸附动力学过程均符合准二级动力学模型,吸附等温线更符合Langmuir模型。结果表明:Cd~(2+)、Cu~(2+)和Pb~(2+)的初始浓度均为40 mg·L~(-1),在25℃下,达到平衡时吸附量分别达到了79.4、 58.5、 72.8 mg·g~(-1); 2-D CN_x在比较广泛的pH范围(3.0~9.0)内对重金属离子都具有比较好的吸附效果;吸附剂在吸附柱过滤穿透实验中表现出很好的吸附效果和可重复利用性,且具有良好的机械稳定性。进一步的机理分析探明,吸附主要基于材料表面的羟基和重金属离子交换及氨基与重金属离子的络合协同作用。  相似文献   

16.
利用具有较好抗氧化性和分散性的壳聚糖-纳米铁(CS-NZVI)颗粒去除上覆水-底泥系统中的Cr(Ⅵ)、Pb~(2+)、Cd~(2+),分析了Cr(Ⅵ)、Pb~(2+)、Cd~(2+)去除的动力学特征,考察了pH和盐度对去除效果的影响。结果表明,CS-NZVI颗粒能够有效去除上覆水及底泥中的Cr(Ⅵ)、Pb~(2+)、Cd~(2+),Cr(Ⅵ)、Pb~(2+)、Cd~(2+)的去除过程满足准一级反应动力学方程;随着pH的升高,上覆水中Cr(Ⅵ)的去除率逐渐降低,而Pb~(2+)、Cd~(2+)去除率逐渐升高,底泥中Cr(Ⅵ)去除率先大幅降低后小幅上升,而Cd~(2+)、Pb~(2+)去除率总体呈降低趋势;高盐度不利于上覆水中Cr(Ⅵ)的去除,但对底泥中Cd~(2+)和Pb~(2+)的去除具有促进作用,对底泥中Cr(Ⅵ)的去除没有明显影响。  相似文献   

17.
以小麦秸秆和活性污泥为原料,在3种温度下热解制备生物炭,使用傅立叶红外光谱(FTIR)和扫描电镜(SEM)对其结构和性能进行表征,探究了以不同生物炭为载体,以解磷菌为固定化菌株制备的固定化微生物对Pb~(2+)的吸附能力,同时研究了吸附时间和热解温度对固定化微生物吸附Pb~(2+)的影响。结果表明:小麦秸秆生物炭较活性污泥生物炭的表面官能团更为丰富,且小麦秸秆生物炭的芳香化程度随热解温度升高而增加;随着热解温度的升高,小麦秸秆生物炭的微孔逐渐发展,孔壁变薄,孔隙结构更为发达;以700℃热解的小麦秸秆生物炭为载体制备的固定化微生物(IBWS700)对Pb~(2+)的吸附量最高,对Pb~(2+)的吸附量可达89.39mg/g;IBWS700对Pb~(2+)的吸附动力学符合准二级动力学方程;IBWS700对Pb~(2+)的吸附可以用Langmuir模型较好地拟合。  相似文献   

18.
采用改进Hummers法制备了氧化石墨烯,再与淀粉进行反应制得了氧化石墨烯改性淀粉复合吸附剂(GO-Starch)。利用红外光谱、X射线衍射、扫描电镜等技术手段对GO-Starch的结构和官能团进行表征,研究GO-Starch对水中Cu~(2+)、Pb~(2+)吸附性能,探讨吸附时间、温度、吸附剂用量、初始浓度、pH等因素对吸附率的影响。结果表明:(1)在30℃、pH为5、Cu~(2+)初始质量浓度为40mg/L的条件下,GO-Starch对Cu~(2+)的吸附在90min达到吸附平衡。在30℃、pH为4、Pb~(2+)初始质量浓度为20mg/L的条件下,GO-Starch对Pb~(2+)的吸附在120min达到吸附平衡。(2)GO-Starch对Cu~(2+)的吸附符合Langmuir等温吸附模型,对Pb~(2+)的吸附符合Freundlich等温吸附模型;对Cu~(2+)、Pb~(2+)的吸附动力学特性均符合准二级动力学模型。  相似文献   

19.
通过恒温振荡平衡法研究了Pb~(2+)在针铁矿上的等温吸附和吸附动力学特征,探讨了吸附的影响因素.结果表明:(1)随Pb~(2+)平衡浓度和pH的增大,针铁矿对Pb~(2+)的吸附量逐渐增大.(2)针铁矿对Pb~(2+)的等温吸附可用Freundlich和Langmuir方程较好地拟合.(3)在相同温度和pH下,随离子强度的提高,针铁矿对Pb~(2+)的吸附量增大.(4)在相同离子强度和pH下,针铁矿对Pb~(2+)的吸附量总体随温度升高而增大.针铁矿对Pb~(2+)的吸附是自发进行的吸热反应.(5)针铁矿吸附Pb~(2+)的过程可分为初始的快吸附和随后的慢吸附2个阶段.pH影响吸附反应快慢,随pH增大吸附速率增大;随着pH的增大,达到平衡吸附的时间缩短.吸附动力学方程用Elovich方程拟合最佳.  相似文献   

20.
以棉花秸秆黑炭(以下简称黑炭)为吸附剂,通过吸附动力学、吸附热力学以及等温吸附实验研究了黑炭对Cd~(2+)的吸附特性。结果表明,Cd~(2+)在黑炭上的吸附动力学更加符合准二级动力学方程,其吸附可分为快速吸附和慢速吸附两个过程,在60min就可以达到饱和吸附量的92%。颗粒内扩散并不是控制吸附速率的唯一步骤,同时受到液膜扩散和表面吸附的作用。吸附等温线拟合发现Langmuir方程能更好地描述Cd~(2+)在黑炭上的吸附行为,Cd~(2+)在炭变化时间为3.0、4.5h的黑炭上的最大吸附量分别为36.36、38.61mg/g。吸附热力学研究结果表明,黑炭对Cd~(2+)的吸附是自发的吸热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号