首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
棘孢曲霉(Aspergillus aculeatus)对Pb~(2+)和Cd~(2+)的吸附特征   总被引:3,自引:0,他引:3  
为了研究棘孢曲霉(Aspergillus aculeatus)对溶液中Pb~(2+)和Cd~(2+)吸附过程的特征,分别从动力学、热力学和吸附等温线三方面进行了实验,同时还研究了pH、温度、时间、重金属离子起始浓度和吸附剂用量对吸附过程的影响。等温吸附过程可以用Langmuir方程来描述。在实验设定条件下,棘孢曲霉对Pb~(2+)和Cd~(2+)最大吸附量分别为71.2 mg/g和59.8 mg/g;动力学实验数据很好的符合二级动力学方程,吸附达到平衡的时间为3 h;热力学实验数据显示该吸附过程为自发的、吸热的过程。  相似文献   

2.
不同膨润土对含镉废水的吸附性能   总被引:1,自引:0,他引:1  
研究了不同投加量和吸附时间时,钠基膨润土、钙基膨润土和高胶质价钙基膨润土对含镉废水中Cd~(2+)的吸附特性。研究结果表明,在相同投加量时钙基膨润土对Cd~(2+)的吸附性能最佳,吸附可在30 min达到平衡。3种膨润土-Cd~(2+)吸附体系中,Freundlich模型对钠基膨润土-Cd~(2+)吸附体系的拟合较好。由膨润土对Cd~(2+)的吸附动力学可知,该吸附过程符合准二级动力学。  相似文献   

3.
为了解狭叶香蒲(Typha angustifolia L.)活性炭的吸附性能及其机理,采用磷酸一步活化法制备了狭叶香蒲活性炭,并对其理化性质进行了表征;通过静态实验,研究了溶液起始pH、Cd~(2+)和Pb~(2+)浓度、吸附时间、温度、活性炭剂量对狭叶香蒲活性炭吸附水溶液中Cd~(2+)和Pb~(2+)的影响。狭叶香蒲活性炭对Cd~(2+)和Pb~(2+)的吸附量随溶液起始pH与温度的增加而增加,吸附平衡时间约为10 min;热力学分析表明,吸附过程自发而且吸热,吸附动力学实验结果符合拟二级动力学模型,Langmuir吸附等温模型能更好地拟合狭叶香蒲活性炭对Cd~(2+)的吸附,Pb~(2+)的平衡吸附量与Freundlich模型的拟合性更好。25℃条件下,由Langmuir线性模型拟合得到的Cd~(2+)和Pb~(2+)最大吸附量Qm分别为83.33和116.28 mg/g。狭叶香蒲活性炭的理化性质分析表明,活性炭表面凹凸不平、多孔,比表面积为780.42 m2/g、孔容23.29 m L/g、平均孔径3.14 nm;活性炭含有羟基、磷酸基、CC键等,等电点为3.3。结果表明,狭叶香蒲活性炭是Cd~(2+)和Pb~(2+)吸附的有效吸附剂,吸附过程包括静电吸附、离子交换等。  相似文献   

4.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb~(2+)、Cd~(2+)浓度下污泥生物炭对Pb~(2+)、Cd~(2+)的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb~(2+)、Cd~(2+)的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb~(2+)的吸附量最大,而Cd~(2+)在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb~(2+)、Cd~(2+)的吸附量为RC500RC400RC300,RC500的饱和吸附量分别为Pb~(2+)(14.39 mg·g~(-1))Cd~(2+)(1.45 mg·g~(-1)),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

5.
以发酵床废弃垫料和秸秆为原料,采用限氧热解法制备不同温度(300、400和500℃)下的垫料生物炭(D300、D400和D500)和秸秆生物炭(S300、S400和S500),通过X-ray能谱仪、扫描电镜、傅里叶变换红外光谱仪等手段表征其物理化学性质,研究不同吸附时间、Cd~(2+)浓度和初始pH下垫料生物炭对Cd~(2+)的吸附性能,并与秸秆生物炭进行比较。结果表明,D300和D400的吸附过程较符合准二级动力学模型,D500的吸附过程更符合颗粒内扩散模型,吸附时间以30 h为宜;垫料生物炭对Cd~(2+)的等温吸附实验更符合Freundlich模型,400℃制备的垫料生物炭对Cd~(2+)的吸附效果最好;D300和D400对Cd~(2+)的吸附能力受pH的影响较大,D500对Cd~(2+)的吸附能力受pH的影响较小,pH在4.5~7.5之间吸附效果较好。秸秆生物炭吸附Cd~(2+)到表观平衡所用的时间在20 h左右,而最大吸附量比垫料生物炭多2.727 mg·g-1。  相似文献   

6.
用悬浮聚合法合成了甲基丙烯酸甲酯(MMA)与丙烯酰胺(AM)的共聚物PMMA/AM,再经羟胺改性制备了含羟肟酸功能基的改性PMMA/AM/HOA树脂。通过红外光谱(FTIR)和热重分析(TG)对PMMA/AM/HOA树脂的结构和稳定性进行了表征。以PMMA/AM/HOA为吸附剂,考察了温度、吸附时间、pH值和金属离子浓度等条件对Hg~(2+)、Cd~(2+)两种金属离子吸附性能的影响。结果表明,改性树脂对Hg~(2+)、Cd~(2+)具有良好的吸附能力,其实验吸附量分别为0.822和0.384 mmol·g~(-1)。改性树脂对Hg~(2+)和Cd~(2+)的吸附过程符合拟二级动力学方程,25℃时其二级动力学吸附速率常数分别为5.301×10~(-2)和3.582×10~(-2)g·(mmol·min)~(-1);改性树脂对Hg~(2+)和Cd~(2+)的吸附量随温度的升高有所增大,吸附过程符合Langmuir和Freundlich吸附等温式。  相似文献   

7.
为探究喹诺酮类抗生素(QNs)在饮用水源地的吸附特征,2019年6月于江苏骆马湖饮用水源地采集沉积物样品,用5种动力学方程拟合沉积物对诺氟沙星(NOR)、环丙沙星(CIP)和氧氟沙星(OFL)的吸附动力学过程,并用Langmuir和Freundlich模型拟合以上3种QNs的吸附热力学过程,分析了pH、水土比和不同Na~+、Ca~(2+)、Mg~(2+)、Al~(3+)浓度对吸附过程的影响。结果表明:骆马湖沉积物对3种QNs的吸附在8h达到平衡,准二级动力学方程和Langmuir模型能更好地描述3种QNs的吸附动力学和热力学过程。酸性条件下,3种QNs的吸附效果更好,且在pH=5时平衡吸附量最大。平衡吸附量随着水土比的上升而下降。Na~+对吸附的抑制作用不明显,Ca~(2+)和Mg~(2+)的抑制作用较强,而Al~(3+)对吸附表现为促进作用。应在枯水期和南水北调时期加强对骆马湖饮用水源地(尤其是东北部)QNs污染的关注。  相似文献   

8.
选取小球衣藻(Chlamydomonas microsphaera)、铜绿微囊藻(Microcystis aeruginosa)、钝顶螺旋藻(Spirulina platensis)和四尾栅藻(Scenedesmus quadricauda)等4种微藻,通过室内模拟实验,对水体中的Cd~(2+)进行吸附,并对吸附Cd~(2+)的微藻分别采用去离子水、0.2 mol·L~(-1)Ca Cl2与研磨处理,测定Cd~(2+)的解脱量,研究活体微藻对重金属离子的富集特征与机理。结果表明:4种活体微藻均对水体中Cd~(2+)有较强的富集能力,在Cd~(2+)初始浓度为10 mg·L~(-1)、溶液pH为7.0的实验条件下,小球衣藻富集量可达76.34 mg·g~(-1),铜绿微囊藻、钝顶螺旋藻和四尾栅藻富集量分别为24.78、15.28和9.85 mg·g-1,说明微藻是良好的重金属吸附剂;4种活体微藻对Cd~(2+)的富集特征均符合准二级动力学方程(R20.99),反映出活体微藻对Cd~(2+)的富集主要是一种化学行为;活体微藻对Cd~(2+)的富集主要是离子交换形式的化学吸附,富集比例均在60%以上,其中小球衣藻最高,达86.51%。除化学吸附外,还包括物理吸附与生物吸收,生物吸收所占富集比例为6.75%~18.96%,而物理吸附量最少,为3.02%~14.63%。  相似文献   

9.
利用氢氧化钠对天然沸石进行改性,将天然沸石和改性沸石用于吸附去除水中的Cu~(2+),分析了p H、温度、Cu~(2+)初始浓度、吸附时间对Cu~(2+)吸附性能的影响,并对吸附过程的吸附等温模型及吸附动力学进行研究。结果表明,改性沸石对Cu~(2+)的吸附性能明显优于天然沸石,当沸石投加量为10 g/L,Cu~(2+)为200 mg/L,p H为6.67,温度为50℃时,天然沸石和改性沸石对Cu~(2+)的吸附量分别为2.02、2.69 mg/g。Langmuir和Freundlich吸附等温模型均能较好地描述两种沸石对Cu~(2+)的吸附过程。天然沸石对Cu~(2+)的吸附行为更符合准一级动力学方程,而准二级动力学方程对改性沸石的吸附行为拟合度更好。两种沸石对Cu~(2+)的吸附均为非均相吸附,且内扩散过程不是唯一的速控步骤。  相似文献   

10.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

11.
采用水热法制备磁性羟基氧化铝(γ-AlOOH@SiO_2/Fe_3O_4),使用透射电子显微镜、X射线衍射、比表面积分析对其进行形貌表征,并研究了其对水体中Cu~(2+)的吸附性能。结果表明:γ-AlOOH@SiO_2/Fe_3O_4对水体中Cu~(2+)的吸附性能受pH、Cu~(2+)初始浓度、接触时间和温度的影响;γ-AlOOH@SiO_2/Fe_3O_4对Cu~(2+)的吸附符合Freundlich等温线方程,最大吸附量可达284.77mg/g;热力学分析表明,γ-AlOOH@SiO_2/Fe_3O_4对水体中Cu~(2+)的吸附过程是自发和吸热过程;动力学分析说明,该吸附过程遵循准二级动力学反应模型,该吸附过程为化学吸附,内扩散是整个吸附过程的限速步骤;Cu~(2+)吸附率随循环使用次数的增加稍有下降,吸附的Cu~(2+)可通过乙二胺四乙酸二钠(EDTA-2Na)脱附。  相似文献   

12.
通过二硫化碳(CS_2)对水葫芦粉进行改性,研究吸附时间、吸附剂浓度和溶液pH对改性前后水葫芦吸附溶液二价汞(Hg~(2+))的影响,并探讨其吸附动力学、热力学行为和除汞机理。结果表明:吸附剂浓度为2 g·L~(-1),溶液pH值为6,吸附时间180 min,改性水葫芦粉对Hg~(2+)浓度为2.0 mg·L~(-1)时的去除率大于93%;改性前后水葫芦粉对Hg~(2+)的吸附过程均符合拟二级动力学方程,化学吸附在整个吸附过程中起重要作用。吸附过程能够很好地用Langmuir方程拟合,吸附自由能变(ΔG)0、吸附焓变(ΔH)0、吸附熵变(ΔS)0,表明改性水葫芦粉对Hg~(2+)的吸附过程是自发的吸热过程;动力学拟合和热力学研究表明改性水葫芦粉对Hg~(2+)的吸附既有物理吸附又有化学吸附。  相似文献   

13.
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd~(2+)的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd~(2+)吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd~(2+)浓度为100 mg·L~(-1),温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L~(-1)条件下,改性玉米秸秆炭和花生壳炭对Cd~(2+)的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd~(2+)的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd~(2+)后,可用NaOH溶液进行解吸,解吸4次后,对Cd~(2+)仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g~(-1)。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd~(2+)的吸附材料。  相似文献   

14.
为提高纳米黑碳(BC)对Cd的吸附钝化效果,以磷酸为改性剂对BC进行改性,通过单因素实验探究不同改性条件对吸附性能的影响,分别改变磷酸浓度、反应温度、反应时间3个要因素,以Cd~(2+)污染模拟水样为研究对象,确定最佳改性参数,同时使用Zeta电位仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪对磷酸改性纳米黑碳(MBC)进行表征,并且通过吸附等温线和吸附动力学实验研究MBC对于Cd~(2+)的吸附过程。研究结果表明,MBC改性最佳条件为2mol/L磷酸55℃水浴加热1.0h。吸附在20min后达到平衡,对Cd~(2+)的最大吸附量为345.329mmol/kg,为优惠吸附,等温吸附拟合更符合Langmuir方程。MBC表面孔隙度、比表面积、结晶度以及表面电荷数较改性前均明显增加,对Cd~(2+)有很强的吸附能力,适用于Cd污染治理。  相似文献   

15.
采用海藻酸钠与改性聚丙烯腈基碳纤维(PAN-CF)制作复合材料吸附去除水溶液中的Cd~(2+),考察不同吸附时间和溶液pH对Cd~(2+)吸附效果的影响。结果表明,改性后PAN-CF的表面官能团增加,表面能提高,相比于未改性PAN-CF制备的复合材料,改性PAN-CF能够缩短复合材料对Cd~(2+)的饱和吸附时间,增加Cd~(2+)饱和吸附量,随着溶液pH的升高,复合材料对Cd~(2+)的吸附量呈先增加后下降的趋势,pH=6时Cd~(2+)的吸附量最大,为162.8mg/g。  相似文献   

16.
以蚯蚓粪中提取到的腐殖酸为研究材料,采用傅里叶变换红外光谱仪分析了蚓粪腐殖酸的功能基团组成,考察了pH、Cd~(2+)初始浓度和吸附时间对蚓粪腐殖酸吸附Cd~(2+)的影响,得到蚓粪腐殖酸对Cd~(2+)的最佳吸附条件。研究结果表明:蚓粪腐殖酸的红外光谱特征吸收峰主要位于3 300~3 600cm-1,主要功能基团为羧基、羟基和胺基;pH小于4.0时,蚓粪腐殖酸对Cd~(2+)的吸附效果较差,近中性条件下吸附效果最佳;Cd~(2+)初始浓度对吸附效果影响较大,Langmuir模型模拟得到Cd~(2+)的最大饱和吸附量为4.47mg/g;蚓粪腐殖酸对Cd~(2+)的吸附作用较为稳定,吸附40min后基本达到饱和;蚓粪腐殖酸对Cd~(2+)有较强的吸附能力,为土壤Cd~(2+)污染修复提供参考。  相似文献   

17.
利用废玻璃和铝渣制备沸石,进而表征沸石结构特征并研究其对水中Ca~(2+)的吸附性能。采用批式实验考察不同温度下沸石用量、初始pH、振荡频率、接触时间对吸附量的影响,并研究吸附过程热力学、动力学特征。结果表明,吸附量随沸石用量增加而减小、随接触时间延长而增大。初始pH和振荡频率对吸附量影响较显著。温度变化对平衡吸附量影响不大,但升高温度可显著缩短吸附平衡时间。最佳工艺参数为:沸石用量20 g·L~(-1),初始pH 6~8,振荡频率150 r·min~(-1),接触时间60 min,此时吸附量约16 mg·g~(-1)。Langmuir等温线最符合沸石吸附水中Ca~(2+)过程,表明该过程是均质单分子层吸附。动力学特征最符合准二级动力学方程,证实该过程主要受离子交换、颗粒外液膜扩散和颗粒内扩散控制。该沸石对水中Ca~(2+)吸附过程是物理吸附和化学吸附并存的自发、吸热、熵增过程。该沸石可较好地去除水中Ca~(2+),故具有一定软化硬水能力。  相似文献   

18.
研究了汾河边砂壤土(A土)和细砂土(B土)在不同影响因素下对Cu~(2+)的吸附特性,对比2种原土和加入高铁酸钾后对水相中Cu~(2+)的吸附动力学和热力学参数。结果表明,B土有机质含量比A土高,其对Cu~(2+)的吸附量大于A土。高铁酸钾的加入对土壤吸附Cu~(2+)有显著效果,最佳吸附条件为A土和B土加入K2Fe O4的Fe/Cu质量比分别为20∶1和5∶1,p H=8~10,T=35℃,此时A土、B土、加入K2Fe O4的A土、加入K2Fe O4的B土的最大吸附量分别为0.36、0.41、0.41和0.46 mg/g。A土和B土对Cu~(2+)的吸附过程满足Freundlich方程,吸附能力大小为:加入K2Fe O4的B土加入K2Fe O4的A土B土A土。吸附热力学表明,该吸附是自发吸热过程,吸附动力学满足准二级动力学模型,表明土壤A和B对Cu~(2+)吸附是以多层吸附为主,同时存在物理和化学吸附过程。  相似文献   

19.
利用尿素和乙二胺四乙酸钠盐通过一步法低温固相裂解合成了二维纳米碳氮材料(2-D CN_x),实现了对水中重金属离子的吸附去除。系统地研究了2-D CN_x对水中重金属离子Cd~(2+)、Pb~(2+)和Cu~(2+)的吸附性能,其吸附动力学过程均符合准二级动力学模型,吸附等温线更符合Langmuir模型。结果表明:Cd~(2+)、Cu~(2+)和Pb~(2+)的初始浓度均为40 mg·L~(-1),在25℃下,达到平衡时吸附量分别达到了79.4、 58.5、 72.8 mg·g~(-1); 2-D CN_x在比较广泛的pH范围(3.0~9.0)内对重金属离子都具有比较好的吸附效果;吸附剂在吸附柱过滤穿透实验中表现出很好的吸附效果和可重复利用性,且具有良好的机械稳定性。进一步的机理分析探明,吸附主要基于材料表面的羟基和重金属离子交换及氨基与重金属离子的络合协同作用。  相似文献   

20.
通过恒温振荡平衡法研究了Pb~(2+)在针铁矿上的等温吸附和吸附动力学特征,探讨了吸附的影响因素.结果表明:(1)随Pb~(2+)平衡浓度和pH的增大,针铁矿对Pb~(2+)的吸附量逐渐增大.(2)针铁矿对Pb~(2+)的等温吸附可用Freundlich和Langmuir方程较好地拟合.(3)在相同温度和pH下,随离子强度的提高,针铁矿对Pb~(2+)的吸附量增大.(4)在相同离子强度和pH下,针铁矿对Pb~(2+)的吸附量总体随温度升高而增大.针铁矿对Pb~(2+)的吸附是自发进行的吸热反应.(5)针铁矿吸附Pb~(2+)的过程可分为初始的快吸附和随后的慢吸附2个阶段.pH影响吸附反应快慢,随pH增大吸附速率增大;随着pH的增大,达到平衡吸附的时间缩短.吸附动力学方程用Elovich方程拟合最佳.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号