首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
将耐盐脱氮复合菌剂投加到序批式生物反应器中,构建生物强化高盐废水处理系统(SBR1),以未投加复合菌剂系统(SBR2)作为对照,分析典型周期中氮素和溶解氧的变化趋势以及盐度冲击对脱氮效果的影响.实验表明,在曝气时间为6h时,生物强化系统脱氮率可稳定在96%以上,出水总氮浓度为3.8 mg/L左右.反应中始终无硝氮、亚硝氮积累,生物强化系统具有同步硝化好氧反硝化能力.当受到5%和7%较高盐度冲击时,生物强化系统表现出优于对照系统的抗盐度冲击能力,能够快速恢复原有活性,且出水总氮低于15 mg/L;当受到0%盐度的淡水冲击时,对照系统中耐盐污泥失活且无法恢复,而生物强化系统只需投加少量(3%)耐盐脱氮复合菌剂,即可快速恢复活性,出水总氮低于15 mg/L.本研究能够为生物强化高盐废水脱氮系统的构建和运行提供技术支持.  相似文献   

2.
在自制0.2 t/h气动超声吹脱实验装置中,通过自主研发的纳米复合脱氮剂(CT-601)与气动超声波的耦合作用,在不同氨氮初始浓度、吹脱时间、CT-601投加量、气液比等条件下对高浓度氨氮废水进行研究。结果发现,在常温下p H=11、气液比=900∶1、脱氮剂投加量为0.0848 g/L时,超声吹脱60 min,处理2 000 mg/L的模拟废水时,去除率可达到93%以上,处理浓度为2 156 mg/L的实际废水时,去除率达到90%以上,较普通吹脱法和超声吹脱法分别提高40%和10%。同时还发现,该装置对COD去除率为29.72%,运行成本也只有7.24元/m3。  相似文献   

3.
直接投加复合微生物菌剂原位修复海水养殖废水,分析复合微生物菌剂对水体氨氮、亚硝态氮、温度、溶解氧、pH及南美白对虾生长情况的影响。结果表明,投加复合微生物菌剂后水质明显改善,在41d的监测周期内,氨氮和亚硝态氮浓度均有所降低,氨氮下降73%,亚硝态氮下降39%,海水温度、溶解氧、pH变化不大,对南美白对虾生长没有明显影响。  相似文献   

4.
设计三因素三水平实验并采用响应面优化法对反应适宜的实验参数进行了优化.选择温度、供氧条件和反应时间作为菌剂制备的可控因素,选择温度、菌剂投加量和木屑投加量(水分调节)作为菌剂处理厨余垃圾的可控因素,研究菌剂制备与处理垃圾的优化工艺参数.研究结果表明,菌剂的最优制备条件为:温度35℃、间歇震荡、培养108 h,按重量百分比为碎花生壳∶刨花∶鱼骨粉∶麸皮∶菌体=2∶1∶1∶1∶1比例制得的固体菌剂具有较高的活性.菌剂处理厨余垃圾的响应面优化法分析结果表明,当温度为45℃,菌剂投加量为6%,木屑投加量为30%时,厨余垃圾的减量率最大,2d降解率可达40%.  相似文献   

5.
为探讨复合菌群对含氮废水的脱氮效果,从鱼池养殖废水中分离筛选出3株脱氮能力较强的菌株LAB004、AD012和NSP101。分析3株菌株在不同复配比下的脱氮效果,从而构建脱氮复合菌群并对该复合菌群进行生长条件优化,最后以乙酸钠、麦芽糖、蔗糖和葡萄糖为碳源,分析了不同碳源对复合菌群生长和脱氮性能的影响。结果显示,当复配比为LAB004∶AD012∶NSP101=3∶2∶4(菌体体积比)时构建的复合菌群的脱氮效果最佳,该复合菌群经生长条件优化后,在接种量为8%(体积分数)、C/N(质量比)为15、pH为7.0的条件下脱氮效果较好,当以乙酸钠为唯一碳源时复合菌群18h左右达到生长峰值,脱氮率达到90%以上。由菌株LAB004、AD012和NSP101组成的复合菌群具有良好的脱氮效果,在水体氮污染治理方面具有一定的应用潜力。  相似文献   

6.
耐盐复合菌剂生物强化处理高盐高硫废水   总被引:1,自引:0,他引:1  
从实验室处理高盐废水的生物反应池中筛选到1株耐盐脱氮硫杆菌XSH7.为提高系统在高盐条件下的处理效果,将该硫杆菌和本实验室保藏的高效硝化菌SW32混合制成复合菌投加到SBR反应池中进行生物强化.比较了强化系统(BS)与非强化系统(NBS)的处理效果,研究了复合菌对系统去除COD、NH3-N和硫代硫酸盐(THS)的影响,并对投菌量与周期作了考察.结果表明,投加复合菌能加快COD降解速度,增强耐负荷冲击能力,提高COD、NH3-N和THS的去除率.10%(质量分数)投菌量的系统24 h即可达到稳定出水,COD、NH3-N和THS去除率最高可达到93%、92%、92%,最大耐受负荷分别为1.128 0,0.C74 5、1.053 0 kg/(m3·d).  相似文献   

7.
针对高氨氮低碳氮比(C/N)黑臭水进行脱氮研究,通过硝化菌和反硝化菌共同作用,并在后期耦合铁碳微电解(IC-ME)强化脱氮。单因素控制变量实验表明,硝化菌和反硝化菌在30℃硝化/反硝化效果较优,平均氨氮去除率为71.62%,硝态氮去除率可达到67.52%;在溶解氧(DO)为3 mg/L时硝化效果较好,平均氨氮去除率达到了70.08%;在后期投加150 g/L铁碳填料时,反硝化效果最好,2#和3#反应器硝态氮去除率最高分别提高到了81.78%和91.17%。长时间运行反应器后,氨氮去除负荷达到0.193 kg/(m3·d),化学需氧量(COD)去除负荷达到1.786 kg/(m3·d)。单独的微生物菌种针对高氨氮低C/N黑臭水脱氮还有一定的局限性,通过后期耦合IC-ME,脱氮效率明显提升,总氮(TN)去除率可从45.65%提升到58.91%。  相似文献   

8.
从城市污水处理厂的活性污泥中驯化分离出2株耐盐高效菌:地衣芽孢杆菌(Bacillus licheniformis)O1和枯草芽孢杆菌(Bacillus subtilis)Y5制备复合菌剂,用于高盐生活污水生物处理工艺快速启动研究。研究表明,在SBR系统中连续投加复合菌剂(制备的配比为1∶1),在30 d完成快速启动(TOC去除率85%),并且在整个启动过程中,TOC的去除率都能够稳定保持在80%左右,而负载复合菌剂填料的投入可获得更稳定的出水水质。通过高通量测序与OTU分类,高盐废水的配入使得活性污泥微生物群落结构发生显著改变,并且在工艺启动后,所投加的耐盐高效菌O1和Y5在活性污泥微生物总量中所占比例由1.31%升高至6.13%,说明O1和Y5能够在小试SBR中长期存留,并逐渐成为优势种属之一。  相似文献   

9.
一种新型微生物菌剂处理生活污水   总被引:1,自引:0,他引:1  
利用从食材中筛选纯化的特定微生物制成复合菌剂,在自然、厌氧和曝气3种不同的供氧条件下,添加不同比例的菌剂处理生活污水,以COD和氨氮浓度为参考指标,考察菌剂对污水的净化效果,并分析其原因。结果表明:(1)菌剂投加量在0.5‰~1‰时对污水中COD的去除具有明显促进作用,自然、厌氧和曝气3种条件下,COD去除率最大分别提高了8.77%、11.22%和11.11%;(2)氨氮的去除效果受反应条件影响很大,厌氧条件下菌剂对污水中氨氮的去除作用不明显,自然和曝气条件下,菌剂对氨氮去除效果显著,去除率增幅最高分别达到22.6%和52.28%;(3)以0.5‰的菌剂投加量曝气处理2 d,COD和氨氮的去除率可以分别提高11.11%和14.13%,初步研究显示,该菌剂对生活污水具有较好的净化效果。  相似文献   

10.
碳源是人工湿地反硝化作用重要的限制因子,提供足够的碳源能够有效地提高湿地系统的反硝化作用,从而提高人工湿地的脱氮效果。考察了以污水碳源作为复合垂直流-水平流人工湿地水平流进水碳源,对系统去氮能力的影响。实验结果显示,添加碳源能使复合人工湿地对TN和氨氮的去除率分别由23.19%、39.57%提高到34.17%和50.4%。当碳源污水(化粪池污水)/硝化处理水(垂直流出水)体积比为1∶4(C/N=1.22∶1)时,系统对氨氮和总氮具有最好的去除效果,且在不同季节具有较强的脱氮稳定性。不同季节加碳源复合系统对氨氮和总氮去除效果差异显著,在夏季去除效果最高可到达66.79%和60.95%。在加污水碳源条件下,增加停留时间对TN去除效果无明显影响,但可以显著提高氨氮去除率;有植物系统比无植物系统去除NH+4-N和TN的效果要好,且夏季提升效果最明显。由此可见,以污水碳源作为复合垂直流-水平流人工湿地系统中水平流部分的碳源,是强化人工湿地脱氮效果的有效手段,但是添加碳源比例、保温措施及植物种植是人工湿地重要的设计参数。  相似文献   

11.
曝气生物流化池生物强化处理高氨氮制革废水研究   总被引:3,自引:0,他引:3  
以曝气生物流化池(ABFT)I艺为核心,通过投加高效菌酶添加剂(简称菌荆)的方法对高氨氮制革废水进行生物强化处理研究.结果表明,在菌剂投加量为0.4 kg/m3,总水力停留时间为32 h(其中生化处理段水力停留时间为29 h)条件下,菌剂投加10 d后氨氮的去除率可达80.2%,25 d后系统即可稳定运行;出水氨氮平均为4.8 mg/L,去除率为98.8%;出水COD平均为137 mg/L,去除率为76.4%.无机碳化合物和生长因子对硝化反应有促进作用,使氨氮的去除率提高约6.6%.该结果显示了ABFT工艺在处理高氨氮制革废水上具有明显优势.  相似文献   

12.
含水率是影响河道底泥后续处置效果与成本的重要因素,采用响应曲面法(RSM)和中心复合设计法(CCD)对Fe(Ⅱ)-过硫酸钾(K_2S_2O_8)优化河道底泥脱水性能进行研究。结果表明,K_2S_2O_8投加量为22.26 mg·g~(-1)TSS、Fe(Ⅱ)投加量为43.63 mg·g~(-1)TSS(K_2S_2O_8和Fe(Ⅱ)投加摩尔比为1∶1.9),初始pH为5.95时,其脱水效果最佳,CST削减率在10 min内能够达到86.16%,与优化响应器拟合的最佳CST削减率86.44%基本一致。基于RSM建立CST削减率预测模型,模型的相关系数R~2和R_(adj)~2分别为0.905 8和0.821 1,拟合度良好。经回归模型方差分析(ANOVA),底泥脱水效率受Fe(Ⅱ)投加量影响最大(P0.001),其次是初始pH(P=0.023),最后是K_2S_2O_8投加量。与市场上常用聚合硫酸铁(PFS)和聚丙烯酰胺(PAM)相比,具有优越的经济性和良好的脱水效果。  相似文献   

13.
从水源水库沉积物中筛选出一株具有较高脱氮效率的异养硝化-好氧反硝化菌SF9。扫描电镜观察其形态特征为(0.2~0.4)μm×(0.4~0.8)μm椭球状,16S r DNA序列分析表明菌株与Delftia lacustris DSM 21246(T)相似性为100%,并分析其系统发育分类地位,对该菌进行贫营养反硝化特性研究。结果表明,该菌在分别以硝氮、亚硝氮及氨氮为唯一氮源时去除率分别达81%、64%和40%。同步硝化反硝化研究表明,该菌在氨氮存在的情况下会优先利用氨氮,在以氨氮与硝氮为氮源时和以氨氮与亚硝氮为氮源时氨氮的去除率分别达81%和74%。将菌株接种到微污染源水(总氮2.34mg/L、C/N为1.2)水体中,总氮72 h去除率达到35%,TOC消耗30%。结果表明,菌株SF9与其他已报道的好氧反硝化菌相比,能耐受更低的C/N比,可作为微污染水源水微生物修复的高效菌剂。  相似文献   

14.
针对硝酸盐氮污染地下水,利用含水层介质培养驯化氢自养脱氮菌,借助静态实验,开展氢自养脱氮的室内研究,考察了初始NO_3~--N浓度、C/N、P/N、溶解氧(DO)和腐殖酸(HA)对脱氮能力的影响。结果表明,当初始NO_3~--N浓度为11mg·L~(-1)时,反应7 d后去除率为97.0%;当初始值分别为22和44 mg·L~(-1)时,13 d后去除率为97.9%和60.7%。在C/N≤2∶1时,生成的NO_2~--N峰值达3.45 mg·L~(-1)。当C/N=15∶1~20∶1时,去除率增加至97.1%~97.8%,NO_2~--N为0.12~0.35 mg·L~(-1)。当P/N由0.03∶1增加至0.29∶1时,去除率由76.5%上升至98.1%。当DO≤1.98 mg·L~(-1)时,去除率为93.7%~96.8%;当DO≥3.87 mg·L~(-1)时,去除率降低至84.1%~88.5%。当HA由0.05 mg·L~(-1)增加至38.75 mg·L~(-1)时,去除率为96.8%~98.1%,同时与初始HA相比残留HA呈降低趋势。初始NO_3~--N浓度、C/N、P/N和DO显著影响氢自养脱氮性能。HA抑制自养脱氮性能,且HA存在时部分NO_3~--N被异养脱氮去除。  相似文献   

15.
利用CASS工艺协同处理高盐高氮榨菜有机废水和生活污水,针对协同处理碳源不足问题,提出以榨菜废水和甲醇作为碳源的两种碳源投加方案,对比分析了CASS工艺在运行周期为8 h、排水比为30%、回流比为100%、预处理后的榨菜废水掺入比为20%的条件下,分别以榨菜废水和甲醇补充碳源及不外加碳源3种情况的脱氮效果。实验结果表明,不外加碳源时,协同处理进水C/N小于3∶1,系统脱氮效果差,出水总氮不达标;以榨菜废水和甲醇为碳源提高C/N至4∶1~5∶1时,系统脱氮效果提高,出水总氮满足GB18918-2002一级B标排放标准;盐度的变化对微生物活性产生的抑制作用,当盐度升高0.1%±0.02%时,微生物系统恢复时间为10 d,而当盐度降低0.1%±0.02%时,微生物系统恢复时间为15 d。  相似文献   

16.
养殖废水SBR碳源投加实时控制研究   总被引:3,自引:3,他引:0  
畜禽养殖废水是典型的高氨氮、低C/N比有机废水。常规生物处理工艺由于反硝化碳源不足导致脱氮效率较低。在2个平行运行的序批式反应器(SBR)中建立实时控制体系以研究投加猪粪浓浆作为外部碳源对脱氮除磷效果的影响。结果表明,根据ORP实时曲线特征优化碳源投加方案,可按水质变化情况适量补充所需碳源,增强体系脱氮效果,同时加强对磷的去除。在优化碳源投加的运行期NH4+-N及PO43-的去除率分别达到99%和69%。  相似文献   

17.
鸟粪石循环利用处理高氨氮废水的热解行为   总被引:2,自引:0,他引:2  
为了循环利用鸟粪石处理高氨氮废水,探讨了鸟粪石煅烧与加碱热解的脱氮率,利用电镜扫描(SEM)和X射线衍射(XRD)对2种热解产物进行了分析。鸟粪石煅烧条件为:温度100~225℃,时间1~5 h;加碱热解条件为:温度60~95℃,时间0.5~4 h,加碱量OH-∶NH4+摩尔比值0.4~1.5。结果表明,虽然XRD分析显示2种热解产物都已失去鸟粪石的特征峰,但是鸟粪石加碱热解效果更好,最佳热解条件为:加碱量OH-∶NH4+摩尔比值1,温度90℃,时间2 h,鸟粪石脱氮率95%以上;加碱热解产物表面为多孔状,完全失去了晶体结构;煅烧热解鸟粪石脱氮率仅为80%左右,热解产物晶体结构破坏不完全。鸟粪石在最佳条件下热解循环处理高氨氮废水,可循环使用6次,氨氮去除率80%以上,出水磷浓度小于8 mg/L。  相似文献   

18.
本实验研究了Fenton试剂法处理槟榔废水的工艺条件。基于Box-Behnken响应曲面法,考察了初始p H值、双氧水投加量、硫酸亚铁投加量和反应时间的单独作用和交互作用,并建立了TOC去除率数学模型。实验表明,在初始p H值为5,双氧水投加量为50 mg/L,硫酸亚铁投加量为12.5 g/L,反应时间为120 min,0.2%PAM加入量为0.2 m L时,整个反应过程对TOC去除率可达到64.1%。通过Box-Behnken响应曲面可知,双氧水投加量、硫酸亚铁投加量的交互作用对TOC去除率有显著影响,其中双氧水投加量对TOC去除率的影响极显著。Fenton试剂处理槟榔废水最佳的工艺条件为:双氧水投加量为54.2 m L/L,硫酸亚铁投加量12.55 g/L,初始p H值为4.98,反应时间为103.5 min。在此条件下TOC去除率为70.18%。  相似文献   

19.
曝气吹脱法用于牛场沼液污染物的去除   总被引:1,自引:0,他引:1  
氨吹脱是一种有效的污水脱氮处理技术,其中曝气吹脱法又简单易行。为了探究曝气吹脱法用于牛场沼液污染物去除的最优条件,实验研究了温度、曝气量、初始p H等参数对氨氮去除效果的影响,并探讨了投加Ca(OH)2及曝气吹脱对COD、TP的去除作用。结果显示:温度、曝气量是影响氨氮去除效果的关键因素,30℃、4 000曝气量条件下氨氮去除率最高;由于沼液本身p H会受吹脱影响升高,因此,调节初始p H在8~9.5范围内对氨氮去除效果无显著影响;Ca(OH)_2能去除少量COD及TP,吹脱也能对COD去除有一定影响,投加7.7 g/L Ca(OH)_2吹脱后,沼液COD、TP去除率分别为9.7%、14.8%。最优条件30℃、4 000曝气量下,不加Ca(OH)2吹脱能得到70%以上的的氨氮去除率。一般情况下建议不加Ca(OH)_2进行沼液氨吹脱。  相似文献   

20.
为进一步提高微污染水中氨氮、有机物去除效果,采用响应曲面法对强化混凝工艺处理微污染水的影响因素和去除效果进行研究,实验以混凝剂投加量、助凝剂投加量和助凝剂投加点为影响因素,浊度、氨氮和COD去除效果为响应值,利用Design-Expert软件对实验数据进行处理,得到二次响应曲面模型,各因素间的交互作用对响应值的影响以及优化水平值。模型优化结果显示,强化混凝处理微污染水的最佳工艺条件为:PAFC投加量17.80 mg·L~(-1),PAM投加量0.39 mg·L~(-1),PAM于快速搅拌结束投加,此时浊度、氨氮、COD的去除率分别为68.03%、10.92%和30.2%,最终通过模型的验证证明了响应曲面法用于优化强化混凝工艺处理微污染水的可行性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号