首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过吸附-解吸实验和土柱淋溶实验,研究了改性硅酸钙对镉(Cd~(2+))的吸附性能及对Cd污染土壤的钝化效果。结果表明,改性硅酸钙对Cd~(2+)有较强的吸附能力,其吸附平衡时间在60 min左右,对溶液pH有较宽的适应范围,且当pH呈中性时,对Cd~(2+)的吸附效果最好。由Langmuir模型拟合结果可知,改性硅酸钙对Cd~(2+)的饱和吸附容量可达441.55 mg·g-1。改性硅酸钙对Cd~(2+)有较好的吸附稳定性,适合用于Cd污染土壤的修复。土柱淋溶实验表明,改性硅酸钙对Cd污染土壤的钝化效果明显,不仅降低淋溶液Cd~(2+)含量,使淋溶液Cd~(2+)累积量显著降低47.01%,还使土壤CaCl2-Cd浓度显著降低94.4%,并促使土壤易溶态Cd向难溶态Cd转变。  相似文献   

2.
对玉米秸秆和花生壳炭化制备的生物炭,运用高锰酸钾进行改性,研究其对Cd~(2+)的吸附效果。通过批次吸附实验,考察了两种改性生物炭对Cd~(2+)吸附的初始浓度、pH值、接触时间等因素的影响。结果表明,在pH为6.0,Cd~(2+)浓度为100 mg·L~(-1),温度为20℃,吸附时间为12 h,吸附剂投加量为1.0 g·L~(-1)条件下,改性玉米秸秆炭和花生壳炭对Cd~(2+)的去除率分别为67.03%和46.10%,与未改性的生物炭相比,吸附率分别提高了3.8倍和6.2倍。改性玉米秸秆炭和花生壳炭对溶液中Cd~(2+)的吸附均符合Langmuir和Freundlich等温吸附模型,最大吸附量分别为68.97和55.55 mg·g-1。两种改性生物炭的吸附行为均符合准二级吸附动力学模型,说明其吸附以化学吸附为主。改性玉米秸秆炭和花生壳炭吸附Cd~(2+)后,可用NaOH溶液进行解吸,解吸4次后,对Cd~(2+)仍有较好的吸附效果,吸附量分别为31.40和24.10 mg·g~(-1)。这说明,高锰酸钾改性玉米秸秆炭和花生壳炭是一种吸附性能高且能够重复利用的去除溶液中Cd~(2+)的吸附材料。  相似文献   

3.
采用剩余污泥为原料,分别于300、400、500℃缺氧条件下制备污泥生物炭,利用X射线能谱仪(EDS)、环境扫描电镜(SEM)、红外光谱(FTIR)对其进行表征,并探究不同吸附时间,不同pH和不同Pb~(2+)、Cd~(2+)浓度下污泥生物炭对Pb~(2+)、Cd~(2+)的吸附特性,以期拓展污泥资源化利用途径。结果表明,准二级动力学方程能更好地描述污泥生物炭对Pb~(2+)、Cd~(2+)的吸附过程,约30 h达到平衡,其吸附主要受化学吸附控制。随溶液初始pH的升高,重金属的吸附量呈先增高后降低趋势,在pH 4.5时对Pb~(2+)的吸附量最大,而Cd~(2+)在pH 6.5时最大。在25℃时,低温热解制备的污泥生物炭对Pb~(2+)、Cd~(2+)的吸附量为RC500RC400RC300,RC500的饱和吸附量分别为Pb~(2+)(14.39 mg·g~(-1))Cd~(2+)(1.45 mg·g~(-1)),污泥生物炭对重金属离子的吸附量与其水合离子半径呈负相关。  相似文献   

4.
为了解狭叶香蒲(Typha angustifolia L.)活性炭的吸附性能及其机理,采用磷酸一步活化法制备了狭叶香蒲活性炭,并对其理化性质进行了表征;通过静态实验,研究了溶液起始pH、Cd~(2+)和Pb~(2+)浓度、吸附时间、温度、活性炭剂量对狭叶香蒲活性炭吸附水溶液中Cd~(2+)和Pb~(2+)的影响。狭叶香蒲活性炭对Cd~(2+)和Pb~(2+)的吸附量随溶液起始pH与温度的增加而增加,吸附平衡时间约为10 min;热力学分析表明,吸附过程自发而且吸热,吸附动力学实验结果符合拟二级动力学模型,Langmuir吸附等温模型能更好地拟合狭叶香蒲活性炭对Cd~(2+)的吸附,Pb~(2+)的平衡吸附量与Freundlich模型的拟合性更好。25℃条件下,由Langmuir线性模型拟合得到的Cd~(2+)和Pb~(2+)最大吸附量Qm分别为83.33和116.28 mg/g。狭叶香蒲活性炭的理化性质分析表明,活性炭表面凹凸不平、多孔,比表面积为780.42 m2/g、孔容23.29 m L/g、平均孔径3.14 nm;活性炭含有羟基、磷酸基、CC键等,等电点为3.3。结果表明,狭叶香蒲活性炭是Cd~(2+)和Pb~(2+)吸附的有效吸附剂,吸附过程包括静电吸附、离子交换等。  相似文献   

5.
以蚯蚓粪中提取到的腐殖酸为研究材料,采用傅里叶变换红外光谱仪分析了蚓粪腐殖酸的功能基团组成,考察了pH、Cd~(2+)初始浓度和吸附时间对蚓粪腐殖酸吸附Cd~(2+)的影响,得到蚓粪腐殖酸对Cd~(2+)的最佳吸附条件。研究结果表明:蚓粪腐殖酸的红外光谱特征吸收峰主要位于3 300~3 600cm-1,主要功能基团为羧基、羟基和胺基;pH小于4.0时,蚓粪腐殖酸对Cd~(2+)的吸附效果较差,近中性条件下吸附效果最佳;Cd~(2+)初始浓度对吸附效果影响较大,Langmuir模型模拟得到Cd~(2+)的最大饱和吸附量为4.47mg/g;蚓粪腐殖酸对Cd~(2+)的吸附作用较为稳定,吸附40min后基本达到饱和;蚓粪腐殖酸对Cd~(2+)有较强的吸附能力,为土壤Cd~(2+)污染修复提供参考。  相似文献   

6.
为提高纳米黑碳(BC)对Cd的吸附钝化效果,以磷酸为改性剂对BC进行改性,通过单因素实验探究不同改性条件对吸附性能的影响,分别改变磷酸浓度、反应温度、反应时间3个要因素,以Cd~(2+)污染模拟水样为研究对象,确定最佳改性参数,同时使用Zeta电位仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪对磷酸改性纳米黑碳(MBC)进行表征,并且通过吸附等温线和吸附动力学实验研究MBC对于Cd~(2+)的吸附过程。研究结果表明,MBC改性最佳条件为2mol/L磷酸55℃水浴加热1.0h。吸附在20min后达到平衡,对Cd~(2+)的最大吸附量为345.329mmol/kg,为优惠吸附,等温吸附拟合更符合Langmuir方程。MBC表面孔隙度、比表面积、结晶度以及表面电荷数较改性前均明显增加,对Cd~(2+)有很强的吸附能力,适用于Cd污染治理。  相似文献   

7.
为了探究我国北方水体中藻类对Cd~(2+)的富集行为,选取常见的蓝藻(钝顶螺旋藻)和绿藻(小球衣藻),模拟天然藻类对Cd~(2+)的吸附和吸收,研究藻液浓度、时间、pH值、温度、共存阳离子类型对富集过程的影响。结果发现:2种藻对Cd~(2+)的富集性能优于活性炭,富集量高出2~17倍左右。藻对Cd~(2+)的富集率随着藻液浓度的增加而升高,而单位富集量则呈现下降趋势;8 h后富集达到饱和;当pH值在3.0~9.0范围内,富集量随着pH值的升高而增加;在室温25℃时富集量最高,低温或高温时富集量都有明显下降;Fe3+对钝顶螺旋藻富集Cd~(2+)几乎没有影响,但对小球衣藻有拮抗作用,Na+、Ca~(2+)对2种藻类富集Cd~(2+)均表现为拮抗作用,且价态越高,拮抗作用越明显。因此,在适宜的环境中,钝顶螺旋藻和小球衣藻对Cd~(2+)具有良好的富集效果。  相似文献   

8.
紫外辐照改性生物炭对土壤中Cd的稳定化效果   总被引:2,自引:0,他引:2  
以废椰子壳为原料制备生物炭,采用365 nm紫外光辐照改性生物炭,探究改性生物炭对土壤中Cd的钝化效果。通过改性生物炭对溶液中Cd~(2+)的等温吸附实验表明,经过16 h辐照后的生物炭吸附效果最好,对溶液中Cd~(2+)的吸附量可达67.46 mg·kg~(-1)。通过添加不同生物炭含量(0、1%、3%、5%和10%)对土壤中Cd的修复实验发现,生物炭的添加可以提高酸性土壤的pH值,但经紫外辐照改性后的生物炭对pH值改变能力不如未改性生物炭。此外,生物炭的添加可使土壤中弱酸提取态和可还原态Cd向可氧化态转化,紫外辐照改性可显著提高这一能力。改性生物炭对土壤中Cd的钝化与表面含氧官能团有关。  相似文献   

9.
用悬浮聚合法合成了甲基丙烯酸甲酯(MMA)与丙烯酰胺(AM)的共聚物PMMA/AM,再经羟胺改性制备了含羟肟酸功能基的改性PMMA/AM/HOA树脂。通过红外光谱(FTIR)和热重分析(TG)对PMMA/AM/HOA树脂的结构和稳定性进行了表征。以PMMA/AM/HOA为吸附剂,考察了温度、吸附时间、pH值和金属离子浓度等条件对Hg~(2+)、Cd~(2+)两种金属离子吸附性能的影响。结果表明,改性树脂对Hg~(2+)、Cd~(2+)具有良好的吸附能力,其实验吸附量分别为0.822和0.384 mmol·g~(-1)。改性树脂对Hg~(2+)和Cd~(2+)的吸附过程符合拟二级动力学方程,25℃时其二级动力学吸附速率常数分别为5.301×10~(-2)和3.582×10~(-2)g·(mmol·min)~(-1);改性树脂对Hg~(2+)和Cd~(2+)的吸附量随温度的升高有所增大,吸附过程符合Langmuir和Freundlich吸附等温式。  相似文献   

10.
以棉花秸秆黑炭(以下简称黑炭)为吸附剂,通过吸附动力学、吸附热力学以及等温吸附实验研究了黑炭对Cd~(2+)的吸附特性。结果表明,Cd~(2+)在黑炭上的吸附动力学更加符合准二级动力学方程,其吸附可分为快速吸附和慢速吸附两个过程,在60min就可以达到饱和吸附量的92%。颗粒内扩散并不是控制吸附速率的唯一步骤,同时受到液膜扩散和表面吸附的作用。吸附等温线拟合发现Langmuir方程能更好地描述Cd~(2+)在黑炭上的吸附行为,Cd~(2+)在炭变化时间为3.0、4.5h的黑炭上的最大吸附量分别为36.36、38.61mg/g。吸附热力学研究结果表明,黑炭对Cd~(2+)的吸附是自发的吸热过程。  相似文献   

11.
以发酵床废弃垫料和秸秆为原料,采用限氧热解法制备不同温度(300、400和500℃)下的垫料生物炭(D300、D400和D500)和秸秆生物炭(S300、S400和S500),通过X-ray能谱仪、扫描电镜、傅里叶变换红外光谱仪等手段表征其物理化学性质,研究不同吸附时间、Cd~(2+)浓度和初始pH下垫料生物炭对Cd~(2+)的吸附性能,并与秸秆生物炭进行比较。结果表明,D300和D400的吸附过程较符合准二级动力学模型,D500的吸附过程更符合颗粒内扩散模型,吸附时间以30 h为宜;垫料生物炭对Cd~(2+)的等温吸附实验更符合Freundlich模型,400℃制备的垫料生物炭对Cd~(2+)的吸附效果最好;D300和D400对Cd~(2+)的吸附能力受pH的影响较大,D500对Cd~(2+)的吸附能力受pH的影响较小,pH在4.5~7.5之间吸附效果较好。秸秆生物炭吸附Cd~(2+)到表观平衡所用的时间在20 h左右,而最大吸附量比垫料生物炭多2.727 mg·g-1。  相似文献   

12.
棘孢曲霉(Aspergillus aculeatus)对Pb~(2+)和Cd~(2+)的吸附特征   总被引:3,自引:0,他引:3  
为了研究棘孢曲霉(Aspergillus aculeatus)对溶液中Pb~(2+)和Cd~(2+)吸附过程的特征,分别从动力学、热力学和吸附等温线三方面进行了实验,同时还研究了pH、温度、时间、重金属离子起始浓度和吸附剂用量对吸附过程的影响。等温吸附过程可以用Langmuir方程来描述。在实验设定条件下,棘孢曲霉对Pb~(2+)和Cd~(2+)最大吸附量分别为71.2 mg/g和59.8 mg/g;动力学实验数据很好的符合二级动力学方程,吸附达到平衡的时间为3 h;热力学实验数据显示该吸附过程为自发的、吸热的过程。  相似文献   

13.
以市政污泥为原料,在300、500和700℃无氧气氛下热解制备污泥基生物炭,探讨不同热解温度对污泥基生物炭性质的影响,研究污泥基生物炭对水溶液中重金属Cd~(2+)的吸附特性。结果表明,随着热解温度升高,污泥基生物炭的产率降低,pH值增大,碳、氢、氧和氮含量降低,芳香化程度增强,亲水性和极性降低,稳定性增强;随热解温度的升高,比表面积不断增大,生物炭表面变得粗糙并且出现明显的孔隙,但平均孔径呈现先增大后减小。在700℃下制备的污泥基生物炭对水溶液中Cd~(2+)的吸附效果优于其他制备温度下获得的生物炭,温度为298.15 K时,最大吸附容量为27.47 mg·g~(-1)。污泥基生物炭对Cd~(2+)的吸附动力学符合准二级动力学方程模型,吸附速率主要由化学吸附控制。污泥基生物炭对Cd~(2+)的吸附表现为快速吸附过程,生物炭前10 min的吸附量超过饱和吸附量的80%。Langmuir吸附等温模型能很好的描述污泥基生物炭对Cd~(2+)的吸附行为,吸附容量随热解温度升高而增大。  相似文献   

14.
在150 m L溶液中,稻秆用量为5 g,硝酸浓度为10%,稻秆颗粒度为20目,改性温度为80℃,改性时间为3h,制备得到硝酸改性稻秆吸附剂。详细探讨了用该吸附剂处理含Pb~(2+)废水的影响因素:吸附剂用量、Pb~(2+)初始浓度、溶液pH值、吸附时间和吸附温度等对Pb~(2+)吸附率的影响,并进一步通过正交实验及对比实验得出处理200 m L,初始浓度为300mg·L-1的含Pb~(2+)废水的最佳吸附工艺为:吸附剂用量为4 g,pH值为6,吸附时间为3 h,吸附温度为20℃,在此工艺条件下,对Pb~(2+)的吸附率达到94.31%,吸附量为14.15 mg·g~(-1)。  相似文献   

15.
选取小球衣藻(Chlamydomonas microsphaera)、铜绿微囊藻(Microcystis aeruginosa)、钝顶螺旋藻(Spirulina platensis)和四尾栅藻(Scenedesmus quadricauda)等4种微藻,通过室内模拟实验,对水体中的Cd~(2+)进行吸附,并对吸附Cd~(2+)的微藻分别采用去离子水、0.2 mol·L~(-1)Ca Cl2与研磨处理,测定Cd~(2+)的解脱量,研究活体微藻对重金属离子的富集特征与机理。结果表明:4种活体微藻均对水体中Cd~(2+)有较强的富集能力,在Cd~(2+)初始浓度为10 mg·L~(-1)、溶液pH为7.0的实验条件下,小球衣藻富集量可达76.34 mg·g~(-1),铜绿微囊藻、钝顶螺旋藻和四尾栅藻富集量分别为24.78、15.28和9.85 mg·g-1,说明微藻是良好的重金属吸附剂;4种活体微藻对Cd~(2+)的富集特征均符合准二级动力学方程(R20.99),反映出活体微藻对Cd~(2+)的富集主要是一种化学行为;活体微藻对Cd~(2+)的富集主要是离子交换形式的化学吸附,富集比例均在60%以上,其中小球衣藻最高,达86.51%。除化学吸附外,还包括物理吸附与生物吸收,生物吸收所占富集比例为6.75%~18.96%,而物理吸附量最少,为3.02%~14.63%。  相似文献   

16.
利用机械球磨的方法可以提高天然黄铁矿的活性,通过XRD和TEM对机械球磨后黄铁矿粉末的表面形态和物理性质进行表征。通过批实验的方法探讨在不同的pH,不同的球磨黄铁矿用量,不同的反应时间和温度的条件下黄铁矿对Cr~(6+),Cd~(2+)和Pb~(2+)的去除效果。研究结果表明,金属离子的吸收受到pH的影响,随着pH的升高,3种金属离子的吸附趋势出现了很大的不同。并且在分析pH对反应效果的影响时,需要考虑金属生成沉淀时的pH。同时,随着反应时间和温度的增加,3种金属离子的吸收量都有不同程度的升高。通过实验比较,球磨黄铁矿对Cr~(6+),Cd~(2+)和Pb~(2+)的去除能力大小为Pb~(2+)Cr~(6+)Cd~(2+)。纳米级黄铁矿与Cr~(6+),Cd~(2+)和Pb~(2+)的反应过程符合准二级动力学方程。  相似文献   

17.
不同膨润土对含镉废水的吸附性能   总被引:1,自引:0,他引:1  
研究了不同投加量和吸附时间时,钠基膨润土、钙基膨润土和高胶质价钙基膨润土对含镉废水中Cd~(2+)的吸附特性。研究结果表明,在相同投加量时钙基膨润土对Cd~(2+)的吸附性能最佳,吸附可在30 min达到平衡。3种膨润土-Cd~(2+)吸附体系中,Freundlich模型对钠基膨润土-Cd~(2+)吸附体系的拟合较好。由膨润土对Cd~(2+)的吸附动力学可知,该吸附过程符合准二级动力学。  相似文献   

18.
通过二硫化碳(CS_2)对水葫芦粉进行改性,研究吸附时间、吸附剂浓度和溶液pH对改性前后水葫芦吸附溶液二价汞(Hg~(2+))的影响,并探讨其吸附动力学、热力学行为和除汞机理。结果表明:吸附剂浓度为2 g·L~(-1),溶液pH值为6,吸附时间180 min,改性水葫芦粉对Hg~(2+)浓度为2.0 mg·L~(-1)时的去除率大于93%;改性前后水葫芦粉对Hg~(2+)的吸附过程均符合拟二级动力学方程,化学吸附在整个吸附过程中起重要作用。吸附过程能够很好地用Langmuir方程拟合,吸附自由能变(ΔG)0、吸附焓变(ΔH)0、吸附熵变(ΔS)0,表明改性水葫芦粉对Hg~(2+)的吸附过程是自发的吸热过程;动力学拟合和热力学研究表明改性水葫芦粉对Hg~(2+)的吸附既有物理吸附又有化学吸附。  相似文献   

19.
通过甲醇酯化制备改性棉铃壳吸附剂,利用红外光谱仪、扫描电镜等表征了改性前后棉铃壳表面结构和官能团变化情况,考察了改性棉铃壳投加量、刚果红初始浓度和溶液pH等因素对改性棉铃壳吸附水中刚果红的性能影响,并通过实验分析了改性棉铃壳对水中刚果红吸附动力学。结果表明,改性后棉铃壳表面官能团明显改变,表面光滑、致密。改性棉铃壳对刚果红的吸附效果较未改性棉铃壳明显提高,增加刚果红初始浓度和吸附时间可以增加改性棉铃壳对刚果红的吸附量。在溶液pH为6、吸附剂投加量为20 g·L-1,吸附时间为120 min时,刚果红的去除率可达79.1%。改性棉铃壳对刚果红的吸附过程符合Lagergren准二级动力学模型,吸附过程属于化学吸附,吸收速率受表面扩散和颗粒内扩散控制。  相似文献   

20.
铁盐改性砂制备及其吸附Zn~(2+)的性能研究   总被引:1,自引:0,他引:1  
通过改变石英砂表面的物理化学性质,提高石英砂的吸附效率,考察其对废水中的Zn~(2+)去除效果.以石英砂为载体,分别用反复高温加热法和反复碱性沉积法制备了三氯化铁改性砂、硝酸铁改性砂,测定2种方法制备的铁盐改性砂的表面含铁量、铁盐的酸稳定性及比表面积,并比较2种铁盐改性砂对Zn~(2+)的吸附效果.结果表明,三氯化铁改性砂、硝酸铁改性砂的比表面积分别为2.468、4.247 m~2/g,比石英砂比表面积分别提高6.910、12.612倍;在pH为中性条件下,石英砂对Zn~(2+)去除率为43%左右,三氯化铁改性砂对Zn~(2+)去除率达到70%左右,硝酸铁改性砂对Zn~(2+)去除率达到85%左右,表明铁盐改性砂对Zn~(2+)去除能力比石英砂有很大提高;铁盐改性砂对Zn~(2+)的吸附有一定容量,表面的活性中心越多,吸附能力越大;铁盐改性砂对Zn~(2+)的去除率随着pH的升高而增加,当pH>8.5时,Zn~(2+)去除率可达90%左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号