首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
采用纳米Fe0还原水溶液中的Cr(Ⅵ),考察纳米Fe0投加量、Cr(Ⅵ)初始浓度、溶液pH值和有机酸等因素对Cr(Ⅵ)还原的影响.结果表明,纳米Fe0对Cr(Ⅵ)的还原效果明显,其对Cr(Ⅵ)的还原率分别是铁粉和铁屑的7和13倍.Cr(Ⅵ)溶液初始质量浓度为20 mg·L-1、Fe0投加量为5g·L-1条件下,反应24 h时纳米Fe0对Cr(Ⅵ)的还原率达82.7%.溶液低pH值可以促进Fe0的腐蚀速度,提高反应速率,当pH值为3.0时还原效果最好.草酸、丙二酸和丁二酸对纳米Fe0还原Cr(Ⅵ)均有明显的促进作用,3种有机酸对Cr(Ⅵ)还原率的提高幅度由高到低依次为草酸、丙二酸和丁二酸.  相似文献   

2.
采用纳米Fe0还原水溶液中的Cr(Ⅵ),考察纳米Fe0投加量、Cr(Ⅵ)初始浓度、溶液pH值和有机酸等因素对cr(Ⅵ)还原的影响。结果表明,纳米Fe。对Cr(Ⅵ)的还原效果明显,其对Cr(Ⅵ)的还原率分别是铁粉和铁屑的7和13倍。Cr(Ⅵ)溶液初始质量浓度为20mg·L-1、Fe。投加量为5g·L“条件下,反应24h时纳米Fe0对Cr(Ⅵ)的还原率达82.7%。溶液低pH值可以促进Fe。的腐蚀速度,提高反应速率,当pH值为3.0时还原效果最好。草酸、丙二酸和丁二酸对纳米Fe。还原Cr(Ⅵ)均有明显的促进作用,3种有机酸对Cr(Ⅵ)还原率的提高幅度由高到低依次为草酸、丙二酸和丁二酸。  相似文献   

3.
零价铁协同超声波降解2,3,4,6-四氯酚的特性   总被引:1,自引:0,他引:1  
研究了2,3,4,6-四氯酚(TeCP)在超声波/零价铁协同体系中的降解,结果表明,拟一级动力学能很好的拟合降解过程,协同体系中TeCP一级降解速率常数为0.0141min~(-1),为同等条件下零价铁体系降解速率常数的10.07倍,且大于两者之和,说明两者之间存在明显协同效应;零价铁(Fe~0)投加量、初始pH值、初始TeCP浓度(C_0)、超声功率和溶液离子强度等控制参数对TeCP降解速率的影响表明,其拟一级速率常数在Fe~0量为2g·l~(-1),初始pH值为6.0,离子强度0.8mol·l~(-1)Na_2SO_4以及超声功率350W时达最大值,并随着C_0的升高而降低.  相似文献   

4.
Fenton试剂氧化降解微囊藻毒素-LR   总被引:5,自引:0,他引:5  
研究了Fenton试剂氧化降解微污染水体中微囊藻毒素MC-LR的效果,在H2O2浓度1.5mmol·l-1,Fe2 浓度0.10 mmol·l-1,反应温度为25±1℃,pH值为4.18及反应时间为30min的条件下,浓度为0.41mg·l-1的MC-LR去除率可以达到92.4%,降解过程符合准一级反应动力学.Fenton试剂氧化体系能有效地降解MC-LR,特别是在紫外光的照射下,MC-LR的降解速率得到大幅度提高.紫外光能促进Fe3 还原为Fe2 ,所以光助Fenton试剂氧化反应中可以使用Fe3 代替Fe2 .  相似文献   

5.
电-Fenton法降解青霉素的动力学研究   总被引:1,自引:0,他引:1  
黄昱  李小明  杨麒  曾光明  张振 《环境化学》2007,26(5):618-621
采用电-Fenton法处理青霉素钠(Penicillin G sodium, PGN)模拟废水,当T=20℃,pH=3时,投加0.5g·l-1 FeSO4和0.2ml·l-1 H2O2,在0.6A电流下降解青霉素钠废水(100 mg·l-1), 20min后青霉素钠去除率为79%,40min后去除率为95%.拟合实验数据得到青霉素钠降解反应的速率方程式为:-d[PGN]/dt=2.35×106 exp(-32869.4/RT )[Fe2 ]0.53[H2O2]0.8[PGN]1.14反应速率常数和反应级数表明,初始阶段降解反应进行非常迅速,且H2O2浓度比Fe2 浓度对电-Fenton降解反应的影响重要.  相似文献   

6.
以木本泥炭为吸附材料,用于去除水中的Cr(Ⅵ).研究了溶液pH值、吸附时间、木本泥炭用量、缓冲液浓度和初始浓度对Cr(Ⅵ)吸附的影响,以及溶液pH值对Cr(Ⅵ)解吸附的影响.结果表明,木本泥炭对Cr(Ⅵ)的去除率随溶液pH值的增大而减小,当溶液pH值为4时,木本泥炭对Cr(Ⅵ)的吸附能力最强,3.33 g·L~(-1)木本泥炭对100 mg·L~(-1)Cr(Ⅵ)的吸附量为29. 98 mg·g~(-1);当磷酸盐缓冲液浓度在0. 10—0.20 mol·L~(-1)范围内时,随着缓冲液浓度的增大Cr(Ⅵ)的吸附量逐渐减小;木本泥炭对Cr(Ⅵ)的吸附符合准一级反应动力学,其吸附等温线符合Langmuir吸附模型;当溶液pH值小于6时,Cr(Ⅵ)的解吸率低于0.32%.  相似文献   

7.
利用氨水对预处理过的玉米芯进行改性,研究改性玉米芯对活性艳红(K-2BP)染料的吸附行为。通过傅里叶红外光谱对改性玉米芯进行结构表征,并考察了pH值、吸附时间、温度和初始浓度对活性艳红K-2BP吸附性能的影响及其吸附动力学性质。结果表明,在pH值1.61、温度30℃和吸附时间10 h条件下吸附效果较佳,其饱和吸附量为22.936 mg·g~(-1),吸附行为符合Langmuir吸附等温线,反应级数符合准二级反应动力学特征,反应活化能为17.655 k J·mol~(-1)。  相似文献   

8.
钟欣  吴迪  张凯欣  谭紫茵  黄伟 《环境化学》2019,38(12):2860-2868
为研究Fe/BiOCl在光照下活化过硫酸盐(PS)产生硫酸根自由基(·SO_4~-)降解偶氮染料橙黄Ⅱ的催化效果,采用一步水热合成法制备铁掺杂BiOCl纳米催化剂,并用X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),X射线光电子能谱(XPS)对其形貌与组成成分进行表征.结果显示,铁元素成功掺杂进入BiOCl的结构中,呈现出纳米盘状形貌结构.在光照辐射下,考察Fe/BiOCl活化PS降解橙黄Ⅱ过程中初始pH、底物浓度、Fe/BiOCl催化剂投加量和PS投加量等影响因素对橙黄Ⅱ降解处理效果的影响.结果显示,橙黄Ⅱ降解效率随着pH值的降低而升高,Fe/BiOCl和PS投加量的增加对橙黄Ⅱ的去除率出现先增加后降低的趋势.Fe/BiOCl催化剂投加量为0.5 g·L~(-1),PS的投加量为1 mmol·L~(-1)的条件下时,溶液pH值为3.0,反应60 min后,橙黄Ⅱ降解的效果最佳,其降解速率符合拟一级反应动力学.通过对催化剂Fe/BiOCl稳定性研究,经5次连续循环使用后,脱色率仍然可以保持在79.6%,说明该催化剂具有良好的循环使用性能.通过投加叔丁醇(TBA),甲醇(MeOH),草酸铵(AO),对苯醌(BQ)等自由基猝灭剂,证明光助Fe/BiOCl/PS体系中具有光生空穴,硫酸根自由基,羟基自由基和超氧自由基,其中超氧自由基和光生空穴在反应体系中起重要作用.反应过程中橙黄Ⅱ的降解产物运用GC/MS进行检测,推导得出橙黄Ⅱ的降解路径.  相似文献   

9.
纳米零价铁去除垃圾渗滤液中铬(Ⅵ)的性能及机理研究   总被引:2,自引:0,他引:2  
利用柠檬酸处理后的纳米零价铁(NZVI)对铬(Cr(Ⅵ))的去除进行了研究.NZVI对Cr(Ⅵ)的去除率受Cr(Ⅵ)初始浓度、pH值、反应温度和NZVI的浓度等因素影响,在Cr(Ⅵ)初始浓度为20mg·1-1、pH=5.0、NZVI投加量为1.0g·1-1和20℃条件下,Cr(Ⅵ)去处率达到了100%.腐殖酸(HA)与Cr(Ⅵ)可以形成稳定的HA-Cr螯合物,这种螯合物减少了溶液中有效的Cr(Ⅵ)浓度;同时,HA与NZVI的反应减少了NZVI的有效活性位点,HA的存在对NZVI去除Cr(Ⅵ)有竞争抑制的作用.  相似文献   

10.
设计了以溶液初始pH值、3,3’,4,4’-四氯联苯(PCB77)初始浓度、纳米零价铁(Fe0)投加量、纳米零价硅(Si0)投加量、腐殖酸和环糊精浓度为影响因素的正交试验,研究纳米Fe0降解PCB77时各因素对反应体系中PCB77残留率、氢离子浓度及氧化还原电位变化的影响及其相互关系。结果表明,在溶液初始pH值为4.5,初始ρ(PCB77)为1 mg.L-1,纳米Fe0投加量为10 g.L-1,纳米Si0投加量为0,ρ(腐殖酸)为0.25 g.L-1,ρ(环糊精)为1 g.L-1时,反应2 h后,PCB77残留率最低,为35.2%。溶液初始pH值对反应体系中PCB77的残留率影响最大,纳米Fe0投加量次之;溶液初始pH值对反应体系中氢离子浓度变化影响最大,环糊精投加量次之;PCB77初始浓度对反应体系中氧化还原电位变化影响最大,纳米Fe0投加量次之。  相似文献   

11.
以棉花秸秆生物炭(BCS)为吸附剂,研究了BCS的吸附动力学、热力学特性以及制备温度、投加量和溶液p H等因素对BCS吸附SO_4~(2-)的影响.结果表明,制备温度为500℃的BCS(BCS500)比300℃的BCS(BCS300)更有利于SO_4~(2-)的吸附去除;在20 m L溶液中,BCS500的投加量为0.1000 g时,对SO_4~(2-)的吸附去除最为理想,升高溶液p H值会减小BCS500对SO_4~(2-)的吸附量.动力学拟合表明准二级动力学方程比准一级动力学方程和Elovich方程能更好地描述吸附过程,所得吸附平衡时间为6 h.颗粒内扩散模型拟合发现BCS吸附SO_4~(2-)分为表面吸附和颗粒内扩散两个过程.相比于其他等温吸附方程,Langmuir方程能更好地描述BCS500对SO_4~(2-)的吸附行为,由Langmuir方程拟合所得BCS500的理论最大吸附量(52.13 mg·g~(-1))比BCS300的理论最大吸附量(31.46 mg·g~(-1))大.而计算所得热力学参数,如吉布斯自由能变G_m0,焓变H_m0和熵变S_m0,表明BCS500对SO_4~(2-)的吸附是一个自发、吸热且熵增加的过程;在25、35、45℃时,G_m分别为-9.61、-12.50、-13.96 k J·mol~(-1),介于-20─0 k J·mol~(-1)之间,且反应为吸热反应,表明BCS500吸附SO_4~(2-)主要以物理吸附为主.  相似文献   

12.
马嘉敏  宋伟  张小磊  李继 《环境化学》2019,38(5):985-990
以两种典型人工合成有机物(磺胺甲恶唑和卡马西平)为主要研究对象,采用铁碳微电解法降解上述两种目标污染物,研究了铁碳质量比、反应时间、pH、铁投加量等因素对磺胺甲恶唑和卡马西平降解效果的影响.结果表明,pH=1,铁碳比为1∶1,铁投加量为80 g·L~(-1)时,磺胺甲恶唑的去除率最高,60 min几乎全部去除.pH=1,铁碳比为1∶4,铁投加量为80 g·L~(-1)时,卡马西平的去除率最高,60 min卡马西平去除率接近90%.在这过程中磺胺甲恶唑和卡马西平发生氧化还原反应,它们的氮被还原成氨氮.磺胺甲恶唑和卡马西平的降解符合假一级反应动力学.  相似文献   

13.
氧化锌表面的Fe(Ⅱ)对三氯乙烯的还原脱氯研究   总被引:2,自引:0,他引:2  
顾晓清  马小东  孙红文 《生态环境》2007,16(4):1180-1183
通过批量实验研究了在氧化锌-Fe(Ⅱ)混合体系中,束缚在氧化锌表面的Fe(Ⅱ)对三氯乙烯的还原脱氯作用。结果表明,这种束缚在氧化锌表面的Fe(Ⅱ)对三氯乙烯有一定的还原脱氯作用,且脱氯反应符合准一级反应动力学方程。与均质溶液中的Fe(Ⅱ)相比,束缚在氧化锌表面的Fe(Ⅱ)对三氯乙烯有更强的还原脱氯作用。实验还发现三氯乙烯在氧化锌-Fe(Ⅱ)混合体系中的还原脱氯速率受pH值和Fe(Ⅱ)浓度的影响。Fe(Ⅱ)浓度为1mmol·L-1,在pH值5.0~9.0范围内,还原脱氯反应速率常数kobs及三氯乙烯去除率随着pH值的升高而增大。维持pH值7.0不变,在Fe(Ⅱ)浓度1~4mmol·L-1范围内,kobs及三氯乙烯去除率随Fe(Ⅱ)浓度的增大而增大,但是Fe(Ⅱ)浓度进一步升高,kobs及三氯乙烯去除率反而降低。当Fe(Ⅱ)初始浓度为4mmol·L-1、pH=7.0时,三氯乙烯在氧化锌-Fe(Ⅱ)混合体系中的kobs及三氯乙烯去除率均达到最大值,分别为0.260h-1、71.7%。  相似文献   

14.
纳米铁用于饮用水中As(Ⅲ)去除效果   总被引:6,自引:0,他引:6  
主要考察实验室合成制得的纳米铁对毒性高,迁移能力强,在厌氧地下水中作为砷的主要存在形式的As(Ⅲ)去除效果.通过批实验探讨吸附动力学,以及pH和纳米铁投加量对As(Ⅲ)的去除影响.反应1 h时,0.25 g纳米铁对起始质量浓度为910μg·L-1 As(Ⅲ)的去除率高达99%以上;反应遵循准一级反应动力学方程,标准化后的速率常数ksA为1.64mL·m-2·min-1.研究结果表明,具有高反应活性的纳米铁将成为饮用水中砷去除非常有效的吸附材料.  相似文献   

15.
本文研究了热活化过硫酸盐降解水体中有机磷农药毒死蜱.考察了温度、过硫酸盐浓度、初始pH值、常见阴离子(CO_3~(2-)、HCO_3~-、Cl-和SO_4~(2-))对毒死蜱降解影响.结果表明,毒死蜱的降解符合准一级动力学,反应速率随过硫酸盐浓度的增加而增大,温度对毒死蜱降解速率的影响符合阿伦尼乌斯模型,pH值的改变对毒死蜱的降解没有显著影响.天然水体4种常见阴离子中,SO_4~(2-)对降解速率无显著影响,Cl~-对毒死蜱降解有促进作用,CO_3~(2-)和HCO_3~-抑制毒死蜱降解,且抑制程度为CO_3~(2-)HCO_3~-.通过自由基淬灭实验验证了体系中·OH和SO_4~-·自由基的存在,且毒死蜱降解过程中·OH起主要作用.  相似文献   

16.
采用UV-254 nm活化过硫酸盐高级氧化技术去除水中污染物麻黄碱(EPH),并研究了其降解动力学过程和降解机理.考察了过硫酸盐(PS)投加量、EPH的初始浓度、不同pH值及不同离子(HCO~-_3、NO~-_3、Cl~-)对降解效果的影响.结果表明,UV-254 nm活化过硫酸盐工艺能有效去除实验条件下的EPH,其氧化降解反应符合二级动力学方程.EPH去除率随着PS投加量的增加而增大.pH对降解反应有较大的影响,在pH=7的条件下,反应速率最快,表观反应动力学常数(k_(obs))为0.467 min~(-1).进一步研究表明,HCO~-_3、NO~-_3和Cl~-对EPH的降解都存在抑制作用,在相同浓度下,其抑制程度依次为Cl~- NO~-_3 HCO~-_3.通过UPLC-MS/MS鉴定了麻黄碱降解的中间体,并提出了可能的降解机理和转化途径.  相似文献   

17.
卤代硝基甲烷(HNMs)是一类典型的含氮消毒副产物(N-DBPs),具有较强的毒性,在饮用水、污水和泳池水中频繁检出.以葡萄糖、氯化铁和氯化铜为原料,通过碳化和煅烧,制备得到纳米零价铁、铜均匀负载的碳基复合材料,材料中的铁为体心立方的α-Fe~0,铜为面心立方体铜,颗粒呈球形且未发生明显的团聚,其平均粒径为18 nm,复合材料比表面积为417 m~2·g~(-1).铜的添加能显著加快复合材料去除三氯硝基甲烷(TCNM)的效率,当Fe与Cu的质量比为10∶1时,复合材料对水中的TCNM具有最高的去除效率和最快的去除速率.在材料投加量为10 mg·L~(-1)(以铁计),TCNM初始浓度为10μg·L~(-1),初始pH值为6.0,温度为25℃,且体系无氧、无余氯的条件下,60 min内可以去除99.7%的TCNM,去除TCNM的反应符合准一级反应动力学方程(R~2 0.9).复合材料在降解TCNM过程中会发生铁的流失,多次使用后的复合材料表面出现了铁的氧化产物,主要为Fe_3O_4和Fe_2O_3,经过二次煅烧,可以恢复复合材料的活性.  相似文献   

18.
本文制备了ZnFe_2O_4/TiO_2光催化剂,利用紫外可见吸收光谱(UV-Vis)、电子透射显微镜(TEM)和X射线衍射(XRD)对ZnFe_2O_4/TiO_2的形貌、结构和光谱特征进行表征.同时,研究了不同条件下复合材料对吲哚美辛(IDM)的光催化降解规律.结果表明,二氧化钛与铁酸锌能够很好地粘附在一起,使得吸收波长发生了红移,扩大了吸收光谱的范围.当ZnFe_2O_4和TiO_2的质量比为3%时,在模拟太阳光的条件下该光催化剂对IDM的降解效果最好,降解率达到95%.此外,IDM的光催化降解反应符合准一级动力学规律,在p H=5、催化剂投加量为0.2 g·L-1时,光催化剂的降解速率常数是纯TiO_2时的2.15倍.随着光催化剂投加量的增大,IDM的降解速率随之增加.p H=5时最有利于光催化剂对IDM的降解.经过5次循环实验后,催化剂对IDM的光催化降解率仍在92%以上,展现了该光催化剂的稳定性.猝灭实验揭示了光生空穴(h+)和超氧自由基在ZnFe_2O_4/TiO_2光催化体系中对IDM的降解贡献率最大,其中光生空穴(h+)的贡献率为78.2%.  相似文献   

19.
研究了O3/H2O2/UV臭氧光催化工艺对水中TCB的降解效果,考察了TCB初始浓度、O3转化率、H2O2投加量及pH值对TCB降解效果的影响及其动力学分析,并通过响应面分析法对实验条件进行了优化组合.结果表明,O3/H2O2/UV对TCB的降解均遵循准一级反应动力学,其中条件优化组合后的反应动力学方程为y=0.0219x-0.0127,准一级反应速率常数为0.0219 min-1,所得线性相关系数为0.983.响应面分析结果表明,在TCB初始浓度0.3 mg.L-1、pH=10.1、H2O2投加量0.33 mmol.L-1、O3转化率99.75%的最优工艺组合条件下,TCB的3次平均去除率为94.2%,与预测值95.0%吻合度较高.  相似文献   

20.
以γ-Al_2O_3为基体,采用水热合成的方法制备新型的颗粒电极γ-Al_2O_3@MIL-101(Fe),通过XRD、FT-IR、SEM、EDS等方法对颗粒电极进行性质表征.以Ti极板作为阴极,Ti-RuO2作为阳极,采用三维电催化氧化体系处理罗丹明B(RhB)模拟废水.以无水硫酸钠为支持电解质,对各影响因素进行了优化实验研究,同时对颗粒电极电催化降解罗丹明B的反应进行了动力学模拟分析,并进行颗粒电极的重复利用实验,以探究制备的新型颗粒电极γ-Al_2O_3@MIL-101(Fe)对水中罗丹明B的电催化氧化性能.实验结果表明制备的新型颗粒电极γ-Al_2O_3@MIL-101(Fe)对罗丹明B的电催化降解反应属于一级动力学反应,反应速率常数k为30.1×10-2min-1,是传统颗粒电极γ-Al_2O_3的15倍;在颗粒电极投加量为33.3 g·L~(-1)、电压20 V、电解质浓度8 g·L-1、pH 2时,25 min后罗丹明B的去除率高达97%;同样条件下,γ-Al_2O_3电催化处理染料水时,1 h后罗丹明B的降解率仅为56%;新型颗粒电极γ-Al_2O_3@MIL-101(Fe)在电催化氧化罗丹明B的反应中具有良好的重复利用性能,经过5次反复利用,其去除率仍能保持在85%左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号