首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过水热法合成了铈掺杂MCM-41(Ce-MCM-41)介孔分子筛,并将其用于臭氧氧化水中对氯苯甲酸(p-CBA).小角X射线衍射(XRD)、氮气吸附-脱附(BET)、紫外可见漫反射光谱(UV-Vis DRS)、透射电镜(TEM)表征结果表明,铈成功进入MCM-41分子筛骨架,以正四面体形式存在,且Ce-MCM-41保持了纯硅MCM-41有序的介孔结构,具有较高的比表面积;铈的掺杂显著提高MCM-41催化臭氧氧化对氯苯甲酸的活性,反应60 min后,TOC去除率由MCM-41的63%提高到86%(Si/Ce=60),而单独臭氧氧化仅为52%;铈的溶出仅为0.085 mg.L-1,较同样负载量的铈负载Ce/MCM-41的溶出(0.44 mg.L-1)有较大减少.催化剂重复使用3次后仍保持较高的活性,这表明Ce-MCM-41具有较好的活性和稳定性,是一种有前景的臭氧氧化催化剂.  相似文献   

2.
钴负载MCM-41分子筛催化臭氧氧化水中氯代苯甲酸   总被引:1,自引:0,他引:1  
通过水热法合成介孔分子筛MCM-41,采用等体积浸渍法制备了Co负载MCM-41分子筛催化剂(Co/MCM-41).小角X-射线粉末衍射(XRD)、紫外-可见漫反射光谱(UV-vis DRS)、N2吸附-脱附等温线及透射电镜(TEM)等对催化剂的成分、结构的表征结果显示,Co/MCM-41保持了纯硅MCM-41有序的介孔结构,钴元素以钴氧化物形式存在,比表面达到772 m.2g-1.将Co/MCM-41分子筛用于催化臭氧氧化水中对氯苯甲酸(p-CBA)的研究,结果表明,在优化条件下(2%负载量和25℃反应温度),催化剂的加入显著改善了TOC去除率,达到84.6%,是单独臭氧氧化的1.6倍.  相似文献   

3.
本研究用直接法和后处理法合成了不同过渡金属(Fe、Co、Ni)负载的介孔分子筛载体材料MCM-41,并利用Al对分子筛进行了改性,制备了Fe/Al复合催化剂,对上述材料进行了表征.研究了这些非均相催化剂对染料活性艳蓝KN-R的催化氧化脱色,分别研究了催化剂制备方法、过渡金属种类及负载量对KN-R脱色效率的影响,并考察了所制得催化剂的稳定性和重复利用性.结果表明,直接法合成的催化剂具有较高的催化性能及较低的金属溶出量,负载铁(Ⅱ)的催化剂对染料的催化降解性能要远高于钴(Ⅱ)和镍(Ⅱ)负载型催化剂,催化氧化活性随金属负载量的提高而显著升高.Al改性进一步提高了催化剂的活性,在pH=2.5,氧化剂H_2O_2投加剂量为50.0 mmol·L~(-1),催化剂剂量为4.0 g·L~(-1)的条件下,反应30 min,对初始浓度为250 mg·L~(-1)的KN-R染料的脱色率均可达95%以上,矿化率达60%以上.当Al/Si为0.21,Fe负载量为23.6 mg·g~(-1)时,在10 min内可将250 mg·L-1的KN-R完全脱色.经过3次循环使用后,上述催化剂仍能表现出良好的性能,但进一步循环使用,催化活性下降.  相似文献   

4.
以活性氧化铝为载体,采用浸渍法制备催化剂,对甲基橙及草酸模拟废水进行处理.在中性条件下,臭氧催化氧化比单独臭氧氧化能提前30 min使得甲基橙溶液褪色,反应105 min时,臭氧催化氧化对TOC的去除率高达96.53%,比单独使用臭氧氧化对甲基橙TOC去除率提高了47.19%,在处理草酸废水时臭氧催化氧化对TOC去除率高达80.59%,比单独使用臭氧氧化对草酸TOC去除率提高了59.14%.在处理甲基橙及草酸的小试实验中催化剂对有机污染物的吸附作用起到了加快反应进行的作用.在对垃圾渗滤液超滤出水时,O3与COD质量比为1:1时,臭氧催化氧化对COD去除率为49.09%,比单独使用臭氧氧化提高36.37%,臭氧催化氧化对TOC的去除率是单独使用臭氧氧化的2.54倍,在处理垃圾渗滤液纳滤浓水时,臭氧催化氧化对COD去除率高达88.72%,比单独使用臭氧氧化提高37.60%,并且臭氧催化氧化对TOC的去除率是单独臭氧氧化的1.6倍.臭氧催化氧化反应过程中产生的羟基自由基对有机物更快的反应速率.  相似文献   

5.
本文以深度处理后印染废水为配水模拟实际废水,对颗粒活性炭催化臭氧氧化降解活性黑5进行了研究.用低温N_2吸附-脱附等温线、SEM-EDS等对颗粒活性炭进行了表征,发现颗粒活性炭比表面积高达931 m~2·g~(-1).考察了颗粒活性炭吸附性能和催化臭氧活性,结果表明单独臭氧与颗粒活性炭催化臭氧脱色率在反应30 min内均高达100%.反应1h时,5 g·L~(-1)、10 g·L~(-1)颗粒活性炭催化臭氧TOC去除率分别为57%、74%,比单独臭氧高出33%和50%,颗粒活性炭具有良好的催化效果,能提高对污染物的矿化效果.颗粒活性炭促进了溶解性臭氧分解,重复使用6次后10 g·L~(-1)活性炭在反应时间为2 h时染料废水TOC去除率均能稳定在85%左右,多次利用后活性炭的催化活性没有明显降低.EPR检测表明,其主要机制为颗粒活性炭能够稳定地催化臭氧分子分解产生羟基自由基,实现污水中有机物的矿化.  相似文献   

6.
以铝-分子筛(Al-MCM-41)为载体,采用加热回流法制备一种非均相芬顿催化剂还原氧化石墨烯-羟基铁/Al-MCM-41(r GO-Fe OOH/Al-MCM-41).以喹啉模拟有机废水,考察该催化剂在不同氧化体系、不同H_2O_2投加量、不同催化剂投加量和不同水质因素(喹啉初始浓度和p H值)条件下对喹啉降解效能的影响,同时考察了催化剂的重复使用性.结果表明,喹啉的光芬顿降解过程符合准一级反应动力学,降解过程中溶液中的NO-3浓度先升高后下降,表明喹啉的吡啶环被打开.对比芬顿反应,模拟日光芬顿反应中光的引入促进羟基自由基的产生,使得喹啉去除率由45%提高到了99%;喹啉降解速率随着催化剂和H_2O_2投加量的增加而升高,但投加量过多会消耗·OH自由基从而抑制喹啉降解,在光芬顿体系中,该催化剂在p H=3.6—9.6的范围内都表现出了很高的活性;当喹啉初始浓度为20 mg·L~(-1),催化剂投加量为0.5 g·L~(-1),H_2O_2投加量为20 mmol·L~(-1),p H=6.3时,该催化剂对喹啉有很好的矿化效果(TOC去除率为3%).催化剂重复使用性能稳定,重复使用5次喹啉去除率仍高达99%,但TOC去除率略有降低,铁溶出率为0.48%以下.  相似文献   

7.
氧化作为水处理常用的方法,对水质和水处理过程影响深远,因而备受关注.运用三维荧光光谱和紫外差异分析等技术研究过氧化氢单独氧化、铝催化过氧化氢氧化、铁催化过氧化氢氧化对水体有机物的作用;并分析其对溶解性有机物(DOM)的结构和形成消毒副产物潜能的影响.结果表明,铁、铝明显催化过氧化氢对有机物的氧化过程,且铁催化能力明显强于铝.当催化剂投量均为0.018 mmol·L~(-1),过氧化氢投加量3.5 mg·L~(-1)时,UV254和TOC值的去除率分别是铁催化35.5%、36.4%和铝催化5.0%、29.3%,而单独氧化仅为14.0%、16.7%.利用三维荧光光谱和紫外差异吸收值去卷积分可以明显检测出上述3种氧化对有机物结构影响的差异.催化氧化不改变荧光峰位置,但不同程度地削弱了各荧光峰强度和区域荧光积分值.其中,铁催化对于类蛋白区、可见光区类富里酸和紫外区类富里酸降解程度较高.由紫外差异去卷积分得到,3种体系对水体有机物紫外结构破坏位点在272 nm处是一致的,但破坏程度不同.如3.5 mg·L~(-1)H2O2、0.018 mmol·L~(-1)催化剂投量时,紫外吸收差异值ΔA272/A272分别为单独氧化7.0%,铝催化8.3%,铁催化18.9%.催化氧化对有机物紫外结构铝催化特征位点为λ339 nm、λ364 nm;铁催化特征位点为λ319 nm、λ425 nm.铝、铁离子催化氧化均提高了三卤甲烷的去除率,铝催化去除率优于铁催化.  相似文献   

8.
催化臭氧氧化去除垃圾渗滤液中难降解有机物的研究   总被引:6,自引:0,他引:6  
刘卫华  季民  张昕  杨洁 《环境化学》2007,26(1):58-61
研究了Fe(Ⅱ),Mn(Ⅱ),Cu(Ⅱ)作用下,均相催化臭氧氧化去除垃圾渗滤液中高浓度的腐殖质.分析催化剂用量、溶液pH值对腐殖质催化臭氧氧化降解的影响.结果表明,与单纯臭氧氧化比较,催化臭氧氧化对UV254和色度去除率无明显改善,但可明显提高以TOC和CODCr表征的有机物去除率;当投加催化剂过量时,以TOC和CODCr表征的有机物去除率虽降低,但仍有促进作用.但Fe2 的过量投加将明显抑制UV254和色度的去除效果.在碱性条件下,催化臭氧氧化法具有更好的去除效果.三种催化剂催化效果为Cu(Ⅱ)>Mn(Ⅱ)>Fe(Ⅱ).采用Cu(Ⅱ)催化臭氧氧化处理实际渗滤液生化处理出水,对CODCr,色度和UV254都显示出较好的去除效果.  相似文献   

9.
分子筛负载Fe3+可见光协助降解有机污染物   总被引:1,自引:0,他引:1  
通过NaY型分子筛负载Fe3 制备异相Fenton催化剂(FeY),采用FeY在可见光(λ>420 nm)照射下研究其降解染料罗丹明B(RhB)和2,4-二氯苯酚(DCP).通过对RhB降解过程的紫外-可见光谱、ESR和红外光谱分析,以及总有机碳量(TOC)的跟踪测定,FeY/H2O2体系在可见光照射下能有效地降解RhB,降解反应主要涉及到·OH自由基的产生和参与.RhB/FeY/H2O2体系在可见光照射下,反应270min,RhB脱色率达到100%,TOC去除率达75.6%.DCP/FeY/H2O2体系在可见光照射下,反应150min,DCP降解率达81.0%.利用酶催化反应米氏方程测定催化剂的活性,FeY催化常数Kcat=2.28×105 mol·l-1·min-1.  相似文献   

10.
催化湿式过氧化氢氧化农药废水Cu-Ni-Ce/SiO2催化剂的研究   总被引:2,自引:0,他引:2  
研究了Cu-Ni-Ce/SiO2催化剂的载体粒度、负载量、焙烧温度和Ce添加量等因素对催化剂活性及稳定性的影响,其最佳制备条件为:80-100目SiO2载体、4%负载量,700℃焙烧温度,0.16?添加量.利用BET比表面积、XRD和金属溶出量对催化剂进行了表征.结果表明:Cu-Ni-Ce/SiO2催化剂催化湿式过氧化氢氧化降解处理吡虫啉农药废水,在催化剂用量10g·l-1,反应温度110℃,双氧水用量为理论需用量,进水pH值为9.0,反应60min的条件下,COD去除率为88.7%,活性组分溶出量较小.  相似文献   

11.
对比考察了污泥基活性炭(SCAC)与3种商品活性炭表面官能团的种类、含量及其催化臭氧氧化去除对氯苯甲酸(p-CBA)效能的差异.同时采用(NH4)2S2O8和NaOH分别对SCAC表面进行酸、碱改性处理,探讨SCAC表面官能团对其催化臭氧氧化活性的影响.结果表明,SCAC表面酸性和碱性官能团含量均高于3种商品活性炭;SCAC和商品炭的加入对臭氧氧化去除p-CBA的效果均起到了促进作用,其中SCAC催化臭氧氧化效果最为明显.反应1.0 min时,p-CBA的去除率由单独臭氧氧化时的26.1%提高到60.2%.经(NH4)2S2O8和NaOH处理后,两种改性SCAC对p-CBA的催化氧化去除效果差异明显,NaOH改性后的SCAC表面碱性官能团丰富,其催化臭氧氧化去除p-CBA的效果得到加强,而经过(NH4)2S2O8改性的SCAC催化效果则有所下降.活性炭催化臭氧氧化反应Rct值([·OH]/[O3])计算结果进一步证明,SCAC表面的碱性官能团是其催化臭氧反应的主要活性位点,可以促进臭氧分子向·OH的转化.  相似文献   

12.
CuO和Cu(Ⅱ)催化臭氧氧化的研究   总被引:8,自引:0,他引:8  
皮运正  王建龙  吴迪 《环境化学》2005,24(2):197-199
以乙二酸为实验对象,研究了CuO/Al_2O_3和Cu(II)对臭氧的催化作用实验结果表明,在低pH条件下,CuO/Al2O3有较强的催化臭氧氧化能力,可以将乙二酸的去除率提高约15%而在中性条件下,20g·l-1CuO/Al2O3的催化效果有限磷酸盐缓冲液可以强烈抑制臭氧氧化乙二酸以及CuO/Al2O3的催化作用与CuO/Al2O3相比,Cu(II)离子有更强的催化臭氧氧化乙二酸的能力  相似文献   

13.
本研究分别以NaOH和NH_3·H_2O为矿化剂,Ce(NO_3)_3·6H_2O为铈源,采用水热法成功制备两种新型纳米二氧化铈材料(CeO_2-Na与CeO_2-N).XRD、FESEM、Raman和EPR等表征手段以及非均相类Fenton降解盐酸四环素(TCH)性能分析结果表明,与CeO_2-N相比,纳米CeO_2-Na催化剂具有更大的比表面积和更高的表面氧空位浓度,其对TCH的催化性能也优于CeO_2-N.在TCH初始浓度为100 mg·L~(-1),催化剂投加量为0.7 g·L~(-1)和H_2O_2投加量为10 mmol·L~(-1)的条件下,CeO_2-Na/H_2O_2/TCH体系对TCH的去除率达86%,通过简单的热处理可以恢复催化剂的催化活性.TCH的降解机理研究表明,该非均相催化体系中起主要作用的是O~-_2·自由基.本研究为纳米氧化铈催化剂的制备及其非均相类Fenton的应用提供一定的技术和理论参考.  相似文献   

14.
利用溶液法,合成了5-硝基水杨醛缩N-苯基邻苯二胺席夫碱及其铜配合物,通过元素分析、紫外可见吸收光谱、红外吸收光谱和X射线电子能谱等技术进行了结构表征和确认.考察了不同条件下该配合物催化过氧化氢氧化降解三氯生的反应,结果表明该配合物能迅速催化过氧化氢氧化降解三氯生.催化反应速度与配合物的用量、过氧化氢的用量和反应温度等因素有关,在起始三氯生浓度0.02 mmol·L~(-1),铜配合物0.05 mmol·L~(-1),过氧化氢1.0 mmol·L~(-1),pH=7.6,反应温度50℃,反应时间为30 min条件下,三氯生的去除率高达80.5%.通过反应过程中反应活性物质的测定,发现降解过程主要涉及羟基自由基的氧化机理.综上结果表明,席夫碱金属配合物可以作为催化剂催化过氧化氢在近中性条件下氧化降解水中三氯生.  相似文献   

15.
分别以氧化铝、氧化硅和多壁碳纳米管为载体,采用沉淀-沉积法制备负载型Pd催化剂.采用透射电镜(TEM)、X射线衍射(XRD)、电感耦合等离子体发射光谱(ICP-AES)、X射线光电子能谱(XPS)等手段对材料进行表征,并对溴氯代乙酸(BCAA)的液相催化加氢脱卤反应进行了研究.结果表明,由于Pd/Al_2O_3催化剂具有较高的等电点,因此相对于Pd/CNT、Pd/SiO_2在BCAA的加氢脱卤反应中具有更高的活性.以Pd/Al_2O_3为目标催化剂,对BCAA的加氢脱卤展开研究,发现催化活性随Pd的负载量的增加而提高.当反应物的初始浓度为0. 1 mmol·L~(-1),pH值为5.6,Pd(1.39)/Al_2O_3用量为25 mg·L~(-1)时,BCAA在20 min时可以实现完全脱溴并在反应2 h后脱氯达60.5%.另外,pH的升高不利于脱卤反应的进行.当反应物的浓度从0. 05 mmol·L~(-1)提高到0.4 mmol·L~(-1)时,反应初活性从1.55 mmol·L~(-1) min~(-1) gCat~(-1)提高到8.37 mmol·L~(-1) min~(-1) gCat~(-1).进一步通过拟合Langumir-Hinshelwood模型,相关系数达到0.97,说明BCAA的加氢脱卤是吸附控制机制.催化过程中溴氯代乙酸的脱溴和脱氯具有协同作用,反应最终生成乙酸.  相似文献   

16.
以葡萄糖为模版,采用蒸发诱导自组装法合成了铁、钛掺杂γ-Al_2O_3(γ-Fe-Ti-Al_2O_3)介孔催化剂,并将其用于臭氧氧化含Br~-水中布洛芬. X射线衍射(XRD)、氮气吸附-脱附(BET)、X射线光电子能谱(XPS)表征结果表明,铁、钛成功掺杂进入γ-Al_2O_3骨架,分布均匀,保持了γ-Al_2O_3有序的介孔结构,具有较大的比表面积,钛的价态为Ti~(4+)和Ti~(3+)共存,铁的价态是Fe~(3+).铁、钛的掺杂显著提高γ-Al_2O_3催化臭氧氧化含Br~-水中布洛芬的活性,且有效阻断了溴酸盐的生成,反应60 min后,TOC去除率由γ-Al_2O_3的54%提高到86%,而单独臭氧氧化仅为13%.电子自旋共振和催化剂表面Fe~(2+)离子捕获实验表明,羟基和超氧自由基是反应活性氧物种,有利于有机物的矿化;有机物能够强化γ-Fe-Ti-Al_2O_3催化剂中的Fe~(3+)还原为Fe~(2+),从而有利于溴酸盐的阻断还原.  相似文献   

17.
实验合成磁性CoFe_2O_4,采用X射线衍射仪(XRD)、扫描电镜(SEM)和X射线能谱仪(EDS)对其进行表征,研究其催化超声/H_2O_2(US/H_2O_2)降解环丙沙星的效果和机理.实验考察了CoFe_2O_4和H_2O_2添加浓度、初始p H值、不同形态氮、氯离子等因素对环丙沙星降解效果的影响.并以大肠杆菌为指示菌种,分析了CoFe_2O_4催化US/H_2O_2降解环丙沙星过程中抑菌性的变化.结果表明,CoFe_2O_4能够有效增强US/H_2O_2降解环丙沙星,CoFe_2O_4和H_2O_2浓度分别为0.04 g·L~(-1)和1.0 mmol·L~(-1)、p H=3.0、反应60 min环丙沙星的降解率达到85.26%;与NH_4~+相比,NO_3~-促进环丙沙星的降解,NO_2~-和Cl~-不同程度抑制环丙沙星的降解.自由基抑制结果表明,CoFe_2O_4增强US/H_2O_2降解环丙沙星主要在于·OH的生成.CoFe_2O_4稳定性结果表明,5次反复实验后,环丙沙星60 min的降解率仅降低了4%左右,催化剂的重复利用性较高.琼脂扩散实验表明,CoFe_2O_4在催化US/H_2O_2降解环丙沙星的同时,CoFe_2O_4/US/H_2O_2体系能够完全去除其对大肠杆菌的抑菌性.  相似文献   

18.
采用电化学氧化(EC)耦合铁(IP)感应电极激发过硫酸盐(KPS)氧化处理焦化废水生化出水,在反应器阴、阳极之间等距离嵌入铁板构建电化学双电解反应体系.该体系中,铁板作为感应电极,充当阳极材料的同时兼具有阴极材料的作用,加快过硫酸盐的活化.在电化学氧化耦合铁感应电极激发过硫酸盐(EC/IP/KPS)试验中,分别将电解时间(0—50 min)、电流密度(0—60 mA·cm~(-2))和过硫酸钾(KPS)投加量(0—5 mmol·L~(-1))作为控制条件,探讨了在不同的影响条件下该电化学反应体系对水中COD、TOC及UV_(254)等有机物污染指标的降解程度.在此基础上,利用SEM、EDS、XRD和XPS等对EC/IP/KPS过程中产生的絮凝物进行了表征,进而推断EC/IP/KPS系统的反应机理.结果表明,在EC/IP/KPS系统中的耦合作用下,当电解时间为30 min、电流密度为30 mA·cm~(-2)、过硫酸钾浓度为2 mmol·L~(-1)时,COD去除率可达77.0%、TOC去除率为54.0%,UV_(254)值明显降低.此外,还对3种不同的实验过程进行了对比,发现EC/IP/KPS系统的处理效果要明显优于KPS和EC/IP处理体系.  相似文献   

19.
通过加入正丁醇以共沸蒸馏法对剩余污泥进行脱水,再对污泥进行干燥、焙烧和改性得到污泥炭催化剂.将污泥炭催化剂用于催化湿式过氧化氢氧化体系,处理头孢氨苄废水.采用响应面法中的中心组合设计实验,考察反应温度、初始pH和过氧化氢投加量对TOC降解率的影响,反应温度和过氧化氢投加量具有显著交互作用.在最佳实验条件下(T=50℃、pH=3.00、H_2O_2=0.071 mol·L~(-1)),TOC去除率为59%,接近预测的TOC去除率(60%),在95%的置信区间内,说明该模型可靠.SEM、TEM、TPD-MS、XPS和FT-IR等分析结果表明污泥炭表面存在纳米尺寸片状结构,这种结构中存在酚羟基、羰基、羧基等活性官能团和醌类结构,且ICP-OES、EDAX和~(57)Fe穆斯堡尔谱等分析结果表明,污泥炭中含有不同价态的Fe,能有效地催化过氧化氢分解,将头孢氨苄转化为苯甲酸、丁二酮等小分子物质,再进一步完全氧化.  相似文献   

20.
为了研究ZnFe/BC在常温下活化过硫酸盐(PS)产生硫酸根自由基(SO_4~(·-))降解酸性偶氮染料金橙Ⅱ(AOⅡ)的效能,采用水热合成法制备了ZnFe/BC催化剂,并用X射线衍射(XRD)和扫描电子显微镜-能谱分析(SEM-EDS)对其形貌与负载成分进行了表征,结果显示生物炭上负载的球状颗粒物为ZnFe_2O_4和Fe_3O_4.考察了ZnFe/BC投加量、PS投加量、AOⅡ初始浓度以及初始pH对ZnFe/BC/PS体系降解AOⅡ效果的影响.结果显示,ZnFe/BC和PS投量的增加对AOⅡ的去除率均有提升效果,而随着AOⅡ初始浓度的增加,金橙Ⅱ的去除率逐渐降低,在初始pH值在3—10范围内,ZnFe/BC对PS均有较高的催化活性.ZnFe/BC催化剂投加量为0.5 g·L~(-1),PS投加量为5 mmol·L~(-1),溶液pH为初始值为6,反应90 min后,50 mg·L~(-1)金橙Ⅱ的脱色率可达到93.7%,而且其降解速率符合拟一级反应动力学.延长反应时间至180 min,TOC去除率达到39.7%.通过对催化剂ZnFe/BC稳定性研究,发现经4次连续循环使用后,金橙Ⅱ脱色率仍然可保持在85%以上,说明该催化剂具有良好的循环使用性能.通过投加对苯醌、乙醇和叔丁醇等3种不同种类的猝灭剂,证实了ZnFe/BC/PS体系中具有SO_4~(·-)、·OH和O_2~(·-)活性物种.发芽实验证明,在反应时间为180 min内,金橙Ⅱ降解出水对小麦发芽的抑制率随反应时间的进行而先升高而逐渐降低,最后基本无抑制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号