首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 217 毫秒
1.
产表面活性剂的石油降解菌降解特性研究   总被引:7,自引:0,他引:7  
从石油化工厂附近的污染土壤中分离到一株产表面活性剂的石油降解菌,经鉴定为假单胞菌属,其生物表面活性剂的产量为0.53g/L。文章研究了该菌株在不同条件下的生长状况,并与两株不产表面活性剂的菌对比测定了其石油降解的效率,生物表面活性剂在此过程中起了重要作用。将表面活性剂产生菌与其它菌株组合能有效的提高菌株对石油的降解效率,最终使另外两种菌株的降解率分别提高了7.38%和18.33%。  相似文献   

2.
杨乐 《环境工程》2015,33(6):153-157
以原油为唯一碳源和能源,从新疆克拉玛依油田土壤中筛选出1株能产生物表面活性剂的高效解烃菌XJBM,经形态观察、生理生化特征和Biolog分析,初步鉴定该菌为铜绿假单胞菌(Pseudomonas Aeruginosa)。薄层色谱分析结果表明,XJBM产糖脂类生物表面活性剂,在最适发酵条件下,生物表面活性剂的产量可达2.25 g/L,可将发酵液表面张力从68.20 m N/m降低到32.50 m N/m,乳化指数(E24)达到81.8%。采用单因素试验对影响XJBM降解率的因素进行了研究,得出最适降解条件为p H 7.5,温度30℃,盐浓度5 g/L,接种量10%。在此条件下,菌株对1%石油烃的7d降解率为63.78%。  相似文献   

3.
石油烃降解混合菌的筛选及其降解条件研究   总被引:1,自引:0,他引:1  
对采集克拉玛依地区的部分石油污染样品进行了富集分离,得到了5组石油烃高效降解混合菌,其中混合菌KL9-1对温度的耐受范围最宽,并且石油烃的降解效率最高。该混合菌在45℃的条件下,通过7 d的降解,稀油的降解率达到43.27%,稠油的降解率达到20.09%。利用单因素试验考察环境因素对混合菌KL9-1降解石油烃的影响,结果表明混合菌KL9-1的接种量、石油烃仞始浓度、初始pH、摇床转速、表面活性剂的添加都会影响石油烃的降解效果,在35℃的条件下,当接种量6.0%、石油烃初始浓度1.5%、仞始pH 7.5、摇床转速120 r/min及添加200 mg/kg Tween80表面活性剂时,稀油和稠油的降解率都达到最高,其中稀油的降解率可以达到62.49%,稠油的降解率达到40.36%。  相似文献   

4.
从松原油田石油污染土壤中筛选出3种高效降解石油烃的菌株分别为微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)YH、类产碱假单胞菌(Pseudomonas pseudoalcaligenes)TM和红球菌(Rhodococcus sp.)K1,对其菌落、菌体形态进行观察,并将3种菌株以不同比例进行复配,研究了3种单菌株及其复配菌株对石油烃的降解效果以及其间的协同降解作用。结果表明:复配菌株与单菌株对石油烃的降解效果有所差异;3种菌株具有协同降解石油烃的作用;3种菌株的复配比例(YH∶TM∶K1)为1∶0.5∶1.5时,对石油烃的降解效果最好;初始浓度为2 000 mg/L的石油烃,加入3 mL复配菌株,在130 r/min、30℃下振荡培养6 d后,石油烃的降解率达94.3%;当石油烃的初始浓度为2 000 mg/L时,复配菌株对石油烃的降解动力学曲线与零级动力学方程的拟合效果良好,其降解动力学方程为y=-309.6x+2 045.0(R~2为0.931),降解半衰期为3.4 d。  相似文献   

5.
鼠李糖脂及其产生菌对原油生物降解影响研究   总被引:3,自引:0,他引:3  
考察了外加鼠李糖脂生物表面活性剂和接种鼠李糖脂产生菌O-2-2对混合烃类降解菌降解原油的影响。结果表明,在降解体系中添加鼠李糖脂使原油20天的降解率由35.7%提高到57.6%。加入鼠李糖脂可同时提高烷烃和芳烃的降解率。在降解体系中接入菌株O-2-2能够快速利用石油烃中的烷烃类化合物并合成鼠李糖脂类生物表面活性剂,从而有效提高总石油烃的降解率。体系中菌株O-2-2的接入虽然使饱和烃的降解率大大提高,却降低了芳烃的降解率;这说明菌株O-2-2和其它烃类降解菌之间可能存在竞争生长关系。  相似文献   

6.
脂肽类生物表面活性剂产生菌的分离及特性研究   总被引:3,自引:0,他引:3  
曹娟  刘怡辰  张振华  冉炜  沈标 《环境科学学报》2009,29(10):2056-2062
从石油污染土壤中分离筛选获得一株产生生物表面活性剂菌株Y8A,经生理生化实验、16S rDNA序列分析等将其鉴定为芽孢杆菌属(Bacillus sp.).Y8A能在22h内将发酵液的表面张力从68.3mN·m-1降到23.5 mN·m-1.经TLC和傅立叶红外光谱分析, 菌株Y8A产生的生物表面活性剂为脂肽类.20mg·L-1 Ca2+和Fe2+能显著促进其生长和表面活性剂的产生;菌株Y8A在20~30℃,pH 5~12范围内产生表面活性剂的能力较强;LB培养基中添加1%乳糖对生长的影响不大,但能够明显促进Y8A产生生物表面活性剂,而葡萄糖、蔗糖抑制表面活性剂的产生.Y8A能够促进石油降解菌Y1D和F11对石油的降解和功夫菊酯降解菌ZZH对功夫菊酯的生物降解.  相似文献   

7.
石油降解菌在石油污染生物修复技术中起到非常重要的作用。本研究分别以渤海湾油污区采集的水样,油样,水油泥混合样为材料富集分离石油降解菌,对其进行生理生化及分子生物学鉴定,并采用GC-MS测定烷烃、环烃、芳香烃等石油烃组分的变化。其中3株菌具有较高石油烃降解能力,16SrRNA序列分析表明该3株菌均与不动杆菌属(Acinetobacter)有99%序列相似性,可初步鉴定为不动杆菌属(Acinetobacter)。3株菌的石油烃降解能力依次为Tust-DM21>Tust-DC12>Tust-DW04,对原油成分的降解效果依次为烷烃>芳香烃>环烃。其中菌株Tust-DM21为一株高效石油烃降解菌,28℃于富集培养基培养10 d后,对烷烃(C10~C30)的降解率可达98%,对芳香烃和环烃的降解率达88%。研究表明,Tust-DM21菌株对烷烃,环烃,芳香烃都有较强的降解能力,是一株具有较好开发前景的石油降解菌。  相似文献   

8.
营养盐对湄洲湾海洋细菌生长及降解石油烃的影响   总被引:4,自引:0,他引:4  
测定从湄洲湾海域分离的烃细菌在添加和不添加N、P营养盐的海水培养基的生物量及对原油和纯烃的降解作用.结果表明,营养盐对不同菌株的生长及代谢有不同的影响.添加N、P营养盐,试验菌PF-6(Pseudomonas fluorescens 6)的生物量增大,而PA-32(P.aeruginosa 32) 的生物量却减少.在初始原油浓度均为1g/L的摇瓶试验中,添加N、P营养盐培养6d,PF-6菌与PA-32菌的除油率分别为25%及26%,而不添加N、P营养盐时,PF-6菌与PA-32菌的除油率分别为21.4%及36.3%.经气相色谱测定,在以正十六烷和萘两种纯烃组成的培养基,营养盐对两个菌株降解正十六烷的影响仍然不同,但在不添加N、P营养盐时,两个菌株对萘均有较高的降解率.无需添加N、P营养盐能正常生长并降解石油烃的菌株,在海洋油污的生物修复中具有应用前景.  相似文献   

9.
为得到高效产生物表面活性剂耐盐菌,从黄河三角洲石油污染盐渍化土壤中分离出41株细菌,经测定发酵液排油活性、表面张力和乳化值(EI24),得到1株高效产生物表面活性剂耐盐菌BF40.通过形态、生理生化特征和16S rDNA序列分析,确定该菌为沙雷氏菌(Serratia sp.).通过液体培养试验,研究了BF40的耐盐特性和降解原油能力,并通过室内土壤培养试验研究了BF40及其产生的生物表面活性剂对石油污染盐渍化土壤的修复作用.结果表明,在含5~70 g·L-1NaCl液体培养基中BF40生长良好,属中度耐盐菌.BF40能有效利用原油,在含10 g·L-1NaCl液体培养基中培养7d,原油降解率达到56.7%.添加BF40产生的生物表面活性剂或接入BF40能明显促进盐渍化土壤石油烃的降解,修复60 d,土壤石油去除率与对照相比分别提高了24.6%和13.4%.接种BF40能降低土壤溶液表面张力,明显提高土壤脱氢酶活性,更能有效促进沥青质降解.添加生物表面活性剂土壤脱氢酶活性与对照相比没有显著差异,但更能有效降低土壤溶液表面张力,促进饱和烃降解,表明接种BF40和添加生物表面活性剂可能对促进石油污染盐渍化土壤的生物修复存在不同作用机制.  相似文献   

10.
为了提高石油污染土壤的生物降解效率,以甲基丙烯酸丁酯制备的树脂为载体吸附石油降解菌进行生物降解,利用GC-MS“指纹图谱”对TPH(total petroleum hydrocarbon,总石油烃)的降解程度及生物演化特性进行分析.结果表明:树脂吸附菌剂后TPH的半衰期为24.23 d,比单纯菌剂降解缩短7.28 d;其中正构烷烃的降解性能表明,高碳数高达92.03%,中、低碳数皆超过75%,高于TPH的56.67%,较好地解释了TPH降解率比单纯菌剂提高的内在原因;在演化特征方面,正构烷烃的生物演化参数——w(∑C21)/w(∑C22+)(C21-、C22+分别指C14~C21和C22~C39)、姥植比〔w(pr)/w(ph)〕和OEP(奇/偶碳数质量比)分别为0.643 3、0.486 5和1.111 9,均高于单纯菌剂演化程度.研究显示,树脂吸附菌剂后对较难降解的偶数碳正构烷烃和类异戊二烯烃类物质的氧化还原能力增强,从生物演化的角度有力地佐证了降解的优势所在.   相似文献   

11.
从石油污染土壤中,通过低温富集,筛选并鉴定得到7株低温石油降解细菌。基于菌株降解石油组分特性,构建6组低温石油降解菌群,利用5 L发酵罐,并通过尾气分析仪在线监测菌群石油降解过程中的CO2产生和O2消耗变化,评价菌群的石油降解能力。由Arthrobacter sp. JLH 001,Acinetobacter baumannii JLH 002,Pseudomonas fragi JLH 003和Arthrobacter sp. JLH 006组成的菌群降解石油效果最佳,48 h后CO2的产生值和O2的消耗值达到最高,在15 ℃时、72 h后能完全降解1%的石油,并且在25 ℃时降解速度显著增强。结果表明:石油污染土壤的原位生物修复可通过低温石油降解菌群的添加实现高效及快速修复。  相似文献   

12.
为研究石油污染对土壤中细菌群落结构及土壤理化性质的影响,分离筛选石油降解菌,从陕北宝塔、吴起、靖边和延长4个县区采集石油污染土壤和未受石油污染土壤,测量土壤中石油、有机质、硝态氮、铵态氮、速效磷、速效钾的含量以及pH;采用高通量测序技术对2种土壤中细菌群落结构进行比较分析;并以石油为唯一碳源,从石油污染土壤中筛选高效石油降解菌,并对所筛选的高效石油降解菌进行16S rDNA鉴定。陕北4个县区石油污染土壤中铵态氮、硝态氮、速效磷和速效钾含量分别降低了0.57,6.63,4.34,8.91 mg/kg,有机质含量增加了2~21倍。石油污染土壤中细菌群落的丰富度和多样性均降低,其中变形菌门(Proteobacteria)和绿弯菌门(Chloroflexi)为主要菌门,分枝杆菌属(Mycobacterium)为丰度最高菌属。以石油为唯一碳源,分离得到8株石油降解菌,其中菌株OS33和菌株OS62-1在5 d内的石油降解率分别为80.51%和81.60%,经鉴定OS33为迪茨氏菌(Dietzia sp.),OS62-1为红球菌(Rhodococcus sp.)。石油污染发生后,土壤中细菌群落的丰富度和多样性降低,筛选的8株石油降解菌中OS62-1石油降解率最高,研究结果进一步丰富了陕北地区石油降解菌菌种资源库。  相似文献   

13.
以陕北石油污染土壤中筛选出来的菌株Y7作为研究对象,用石油烃培养基进行驯化培养。通过石油烃降解率、OD(吸光度)值和pH值等指标来评价降解效果。研究结果表明菌株Y7可以对石油烃进行有效降解,并且在培养基中加入适量的Fe2+,对菌株的生长和石油烃的降解有一定促进作用,其中最佳Fe2+浓度为24 mg/L;菌株Y7在最佳Fe2+浓度的环境下,前3天降解石油烃效果最好,降解率可达40%。  相似文献   

14.
为了在自然环境中寻找高效油脂降解菌用于含油污水的处理,从取自哈尔滨市冬季生活污水管道的菌泥中分离出低温细菌24株.通过驯化、分离、纯化,筛选出8株在5 ℃下对油脂具有分解能力的细菌.经过复筛,确定5#菌为低温高效降解植物油脂的菌株. 5#菌在初始ρ(花生油)为4 000 mg/L时,以2%接种量,pH为7.2,摇床转速为120 r/min,5 ℃下培养5 d,油脂的去除率达70%以上.经过16S rDNA序列分析鉴定发现,5#菌与假单胞菌有99%的相似度. 结合形态学、生理生化特征和16S rDNA序列分析结果,认定5#菌属于假单胞菌属.   相似文献   

15.
从大庆石油污染土壤中分离得到14株石油降解丝状真菌,用以筛选可高效降解石油的菌群. 经过ITS(转录间隔区序列)分析,其中9株属于镰孢霉属(Fusarium sp.),2株属于黄白生丛赤壳菌属(Bionectria sp.),另外3株分别属于葡萄穗酶菌属(Stachybotrys sp.)、曲霉属(Aspergillus sp.)和雅致放射毛霉属(Actinomucor sp.);在固体培养基中各菌株的生长速率差异显著(P<0.01). 不同菌株能够特异降解不同的石油组分. 将筛选的优势菌株组成2个菌群,菌群1由菌株3、D2、D3和D52组成,菌群2由菌株3、6、D2和D3组成,分别考察单菌和2个菌群对原油的降解效果,结果表明:菌株原油降解试验30d后,单菌菌株D52对原油去除率最大,为64.25%;菌群1和菌群2对原油的去除率较高,分别达到74.55%和72.64%,可以考虑用于污油生物修复治理的工程菌群开发研究.   相似文献   

16.
从中国浙江省舟山渔场油污染的海水和海洋沉积物中分离筛选产生物表面活性剂的柴油降解菌株。经富集培养、形态观察、测定单菌噬油斑、柴油降解率大小初筛到3株柴油降解菌。然后对初筛到的3株菌进行液滴坍塌实验、发酵液的表面张力、排油圈和乳化稳定性的大小测定进一步复筛,最终筛选出1株产生物表面活性剂的柴油降解菌,经18s rRNA鉴定为海洋解脂耶罗威亚酵母(Yarrowia lipolytica)。其柴油降解率为80%,发酵液液体表面张力可从73.4 mN/m降至23.56 mN/m,乳化效率E24为60%。通过薄层色谱、傅里叶变换红外光谱、GC/MS鉴定,其产生的表面活性剂是由C14、C15β-羟基脂肪酸组成的脂肽。  相似文献   

17.
生物降解是多环芳烃从环境中去除的主要途径,菲是一种典型的三环芳烃。本研究考察了一株能高效降解多环芳烃菲的鞘氨醇单胞菌GY2B在含河沙环境及不同盐度的人工海水环境中的生长特性与降解菲的情况。结果表明:河沙的加入对菌株GY2B的生长及其高效降解菲的性能均无明显影响,65 h可将起始浓度为100 mg/L的菲降解99.5%以上;而经过驯化后在添加85%人工海水的条件下该菌也仍可正常生长并高效降解菲,66 h可将起始浓度为100 mg/L的菲几乎完全降解。本研究结果可为菌株GY2B在受多环芳烃污染的河滩、河口及近海海洋环境修复中的应用提供参考依据。  相似文献   

18.
完全对称电场对电动-微生物修复石油污染土壤的影响   总被引:5,自引:0,他引:5  
针对石油这种非极性复杂有机污染物难以去除的特点,以含油量为50 mg/g的石油污染土壤为研究对象,运用行/列循环切换方式,每5 min切换一次电极极性,建立空间和场强上完全对称的电场,旨在研究完全对称电场条件下电动-微生物联合修复对石油污染物去除率的影响. 对土壤有效氮、有效磷、有效钾等营养物含量以及降解菌数量在电场作用下的变化进行比较. 结果表明,1 V/cm的电压梯度下,土壤中的w(有效氮),w(有效磷)和w(有效钾)分别为初始值的1.3,1.6和1.2倍;同时,在电场作用和电极极性切换条件下,土壤的pH为6.3±0.2,温度升高2~3 ℃,石油降解菌的数量增加,当处理时间为20 d时,降解菌数量最大值达2.3×109  CFU/mL,进而提高了石油的去除率. 烷烃在电动处理下降解速率加快,60 d烷烃去除率达到15.73%. 经过60 d的电动-微生物修复,石油去除率达到33.42%,是对照组的2.4倍.   相似文献   

19.
石油作为重要的能源之一,在被大量开采、运输和使用的同时,带来了严重的污染。利用微生物降解石油烃类污染物是当前治理石油污染最为理想的有效方法。介绍了降解石油烃的微生物种类和降解机理,并分析了固定化、表面活性剂、低温条件等对降解过程的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号