首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of relatively low levels of O(3) (40-50 ppb) and CO(2)-enrichment (+100 ppm) on a northern European lowland hay meadow during the summers 2002-2004 using open-top chambers (OTCs) and ground-planted mesocosms. Ozone reduced the aboveground biomass of the community (up to 40%), and four out of seven species (Campanula rotundifolia, Fragaria vesca, Trifolium medium, Vicia cracca) showed either significant growth reduction and/or visible injuries under elevated O(3). However, the reductions in aboveground biomass were not reflected as changes in the dominance of different functional groups or in the total community root biomass. Elevated CO(2) did not amend the detrimental effects of O(3) on aboveground biomass. Elevated CO(2) alone had only minor effects. An O(3)-induced reduction in the aboveground biomass and N pool of the community are likely to have important consequences in the nutrient cycling of the ecosystem.  相似文献   

2.
Potted seedlings of black cherry (Prunus serotina Ehrh.) (BC), green ash (Fraxinus pennsylvanica Marsh.) (GA), and yellow-poplar (Liriodendron tulipifera L.) (YP) were exposed to one of the four treatments: (1) charcoal-filtered air (CF) at ambient CO(2) (control); (2) twice ambient O(3) (2 x O(3)); (3) twice ambient CO(2) (650 microl l(-1)) plus CF air (2 x CO(2)); or (4) twice ambient CO(2) (650 microl l(-1)) plus twice ambient O(3) (2 x CO(2) + 2 x O(3)). The treatments were duplicated in eight continuously stirred tank reactors for 10 weeks. Gas exchange was measured during the last 3 weeks of treatment and all seedlings were destructively harvested after 10 weeks. Significant interactive effects of O(3) and CO(2) on the gas exchange of all three species were limited. The effects of elevated CO(2) and O(3), singly and combined, on light-saturated net photosynthesis (A(max)) and stomatal conductance (g(s)) were inconsistent across species. In all three species, elevated O(3) had no effect on g(s). Elevated CO(2) significantly increased A(max) in GA and YP foliage, and decreased g(s) in YP foliage. Maximum carbon exchange rates and quantum efficiencies derived from light-response curves increased, while compensation irradiance and dark respiration decreased in all three species when exposed to 2 x CO(2). Elevated O(3) affected few of these parameters but any change that was observed was opposite to that from exposure to 2 x CO(2)-air. Interactive effects of CO(2) and O(3) on light-response parameters were limited. Carboxylation efficiencies, derived from CO(2)-response curves (A/C(i) curves) decreased only in YP foliage exposed to 2 x CO(2)-air. In general, growth was significantly stimulated by 2 x CO(2) in all three species; though there were few significant growth responses following exposure to 2 x O(3) or the combination of 2 x CO(2) plus 2 x O(3). Results indicate that responses to interacting stressors such as O(3) and CO(2) are species specific.  相似文献   

3.
Although ozone has been shown to reduce the growth of individual species and to alter the composition of simple species mixtures, there is little understanding of its long-term effects on species dynamics and composition in real communities. Intact turfs of calcareous grassland were exposed to four different ozone regimes in open-top chambers over three consecutive summers. Treatments provided a mean seasonal AOT40 ranging from approximately zero to 15 ppm h. Cumulative ozone exposure was a significant factor in compositional change, but only explained 4.6% of the variation. The dominant grass species (Festuca rubra) showed a consistent decline in cover in the high ozone treatment over time and the forb Campanula rotundifolia was lost from all three ozone treatments. The frequency of some species (Galium verum and Plantago lanceolata) increased with ozone exposure. Long-term effects of ozone on species composition in chalk grassland may be a function of both the sensitivity of individual species and the response of the dominant species.  相似文献   

4.
Atmospheric chemical composition affects foliar chemical composition, which in turn influences the dynamics of both herbivory and decomposition in ecosystems. We assessed the independent and interactive effects of CO2 and O3 fumigation on foliar chemistry of quaking aspen (Populus tremuloides) and paper birch (Betula papyrifera) at a Free-Air CO2 Enrichment (FACE) facility in northern Wisconsin. Leaf samples were collected at five time periods during a single growing season, and analyzed for nitrogen. starch and condensed tannin concentrations, nitrogen resorption efficiencies (NREs), and C:N ratios. Enriched CO2 reduced foliar nitrogen concentrations in aspen and birch; O3 only marginally reduced nitrogen concentrations. NREs were unaffected by pollution treatment in aspen, declined with 03 exposure in birch, and this decline was ameliorated by enriched CO2. C:N ratios of abscised leaves increased in response to enriched CO2 in both tree species. O3 did not significantly alter C:N ratios in aspen, although values tended to be higher in + CO2 + O3 leaves. For birch, O3 decreased C:N ratios under ambient CO2 and increased C:N ratios under elevated CO2. Thus, under the combined pollutants, the C:N ratios of both aspen and birch leaves were elevated above the averaged responses to the individual and independent trace gas treatments. Starch concentrations were largely unresponsive to CO2 and O3 treatments in aspen. but increased in response to elevated CO2 in birch. Levels of condensed tannins were negligibly affected by CO2 and O3 treatments in aspen, but increased in response to enriched CO2 in birch. Results from this work suggest that changes in foliar chemical composition elicited by enriched CO2 are likely to impact herbivory and decomposition, whereas the effects of O3 are likely to be minor, except in cases where they influence plant response to CO2.  相似文献   

5.
Naturally regenerated, 30-year-old Scots pines (Pinus Sylvestris L.) were grown in open-top chambers and exposed in situ to doubled ambient O(3), doubled ambient CO(2) and a combination of elevated O(3) and CO(2) from 15 April to 15 September for three growing seasons (1994-1996). To examine the effects of O(3) and/or CO(2) on photosynthesis, chlorophyll a fluorescence and gas exchange were measured simultaneously. Doubled ambient O(3) significantly decreased the rates of photosynthesis at all levels of photon flux density. This was related mainly to a significant decrease in the photochemical efficiency of photosystem II (PS II) and the rate of whole electron transport, rather than to a decrease in stomatal conductance. When measurements were made at doubled ambient concentration of CO(2) (700 micromol mol(-1)), doubled ambient CO(2) treatment did not lead to a significant change in the intrinsic capacity of photosynthesis, as manifested by no changes in PS II, the rate of electron transport, the maximal rate of photosynthesis and the apparent quantum yield of CO(2) assimilation. However, elevated CO(2) increased the sensitivity of stomatal conductance to light and decreased maximal stomatal conductance. When O(3) and CO(2) were combined, the O(3)-induced decrease in photosynthesis rate was reduced significantly by a high concentration of CO(2). This may be partly related to the decrease in stomatal conductance induced by the high concentration of CO(2). The complete mechanism behind this interaction is, however, still unclear.  相似文献   

6.
Patterns of environmental change in the biosphere include concurrent and sequential combinations of increasing ultraviolet (UV-B) and ozone (O(3)) at increasing carbon dioxide (CO(2)) levels; long-term changes are resulting mainly from stratospheric O(3) depletion, greater tropospheric O(3) photochemical synthesis, and increasing CO(2) emissions. Effects of selected combinations were evaluated in tomato (Lycopersicon esculentum cv. New Yorker) seedlings using sequential exposures to enhanced UV-B radiation and O(3) in differential CO(2) concentrations. Ambient (7.2 kJ m(-2 )day(-1)) or enhanced (13.1 kJ m(-2) day(-1)) UV-B fluences and ambient (380 microl l(-1)) or elevated (600 microl l(-1)) CO(2) were imposed for 19 days before exposure to 3-day simulated O(3) episodes with peak concentrations of 0.00, 0.08, 0.16 or 0.24 microl l(-1) O(3) in ambient or elevated CO(2). CO(2) enrichment increased dry mass, leaf area, specific leaf weight, chlorophyll concentration and UV-absorbing compounds per unit leaf area. Exposure to enhanced UV-B increased leaf chlorophyll and UV-absorbing compounds but decreased leaf area and root/shoot ratio. O(3) exposure generally inhibited growth and leaf photosynthesis and did not affect UV-absorbing compounds. The highest dose of O(3) eliminated the stimulating effect of CO(2) enrichment after ambient UV-B pre-exposure on leaf photosynthesis. Pre-exposure to enhanced UV-B mitigated O(3) damage to leaf photosynthesis at elevated CO(2).  相似文献   

7.
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.  相似文献   

8.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   

9.
Seedlings of Betula pubescens were grown at two CO(2) concentrations, in combination with either two O(3) concentrations or two air temperatures, during 34-35 days at 24 h day(-1) photoperiod in growth chambers placed in a greenhouse. Increasing the CO(2) concentration from 350 to 560 micromol mol(-1) at 17 degrees C air temperature increased the dry weight of the main leaves, main stem, branches and root. The mean relative growth rate (RGR) was increased 10% by CO(2) enrichment, while increasing the O(3) concentration from 7 to 62 nmol mol(-1) decreased the RGR by 9%. The relative biomass distribution between the different plant components was not significantly affected by the CO(2) concentration irrespective of the O(3) concentration. No significant interactions between CO(2) and O(3) concentration were found except on leaf size, which was stimulated more by elevated CO(2) concentration at high, compared to low, O(3) levels. In another experiment, elevated CO(2) (700 micromol mol(-1)) significantly increased the dry weight of the different plant components, and more at 20 degrees C than at 15 degrees C. Raising the CO(2) concentration increased the RGR by 5 and 10% at 15 and 20 degrees C, respectively. CO(2) enrichment increased the branch dry weight relatively more than the dry weight of the other plant parts. Increasing the CO(2) concentration or temperature increased the plant height and stem diameter, however, no interactions between CO(2) and temperature were found.  相似文献   

10.
11.
Photochemical ozone creation potential (POCP) values for 83 different volatile organic compounds (VOCs), including CO and CH4, were calculated under different environmental conditions representative for Europe. These calculations show that variations in POCP values are large between different types of chemical environments and that POCP values for VOCs should be presented as ranges instead of single values. POCP ranges are based on the extremes of the POCP values and are defined with the intention to include all POCP values an individual VOC will obtain in any European environment where O3 formation is of environmental concern. The POCP ranges indicate large differences in O3 production between individual VOCs, which justifies the use of this ranking scale instead of treating all VOCs as a homogeneous group of species in abatement strategies. Both the average O3 production over 96 hr and the maximum contribution to the O3 concentration were studied. The most efficient O3 producers were found to be isoprene, 2-methyl-2-butene, and acrolein. As a group, the alkenes are the most potent O3 producers, followed by higher alkanes and then the aromatics. The calculated values show a good agreement with previously calculated POCP values under northern European conditions.  相似文献   

12.
Seeds of Eucalyptus tetrodonta were sown under ambient or CO(2) enriched (700 microl litre(-1)) conditions in tropical Australia. Four sets of measurements were made, the first two after 12 months, on trees growing either in pots or planted in the ground. The third and fourth set were made after 18 and 30 months exposure to CO(2) enrichment, on trees growing in the ground. After 12 months exposure to CO(2) enrichment, the rate of light-saturated assimilation (Amax) of plants growing in the ground was determined. Responses of CO(2) assimilation to variations in leaf temperature, leaf-to-air vapour pressure deficit (LAVPD), light flux density and CO(2) concentration were also measured in the laboratory using plants growing in large pots. There was no significant difference in Amax between pot and ground located plants. Assimilation of E. tetrodonta was relatively insensitive to changes in LAVPD for both ambient and CO(2) enriched plants but the temperature optimum of assimilation was increased in plants grown and measured under CO(2) enrichment. Plants grown with CO(2) enrichment had an increased rate of light-saturated assimilation and apparent quantum yield was significantly increased by CO(2) enrichment. In contrast, carboxylation efficiency was decreased significantly by CO(2) enrichment. After 18 months growth with CO(2) enrichment, there was no sign of a decline in assimilation rate compared to measurements undertaken after 12 months. At low LAVPD values, assimilation rate was not influenced by CO(2) treatment but at moderate to high LAVPD, plants grown under CO(2) enrichment exhibited a larger assimilation rate than control plants. Specific leaf area and chlorophyll contents decreased in response to CO(2) enrichment, whilst foliar soluble protein contents and chlorophyll a/b ratios were unaffected by CO(2) treatment. Changes in soluble protein and chlorophyll contents in response to CO(2) enrichment did not account for changes in assimilation between treatments. After 30 months exposure to CO(2) enrichment, the rate of light-saturated assimilation was approximately 50% larger than controls and this enhancement was larger than that observed after 18 months exposure to CO(2) enrichment.  相似文献   

13.
Open-top chambers (OTCs) were used to evaluate the effects of moderately elevated O3 (40-50 ppb) and CO2 (+100 ppm) and their combination on N2O, CH4 and CO2 fluxes from ground-planted meadow mesocosms. Bimonthly measurements in 2002-2004 showed that the daily fluxes of N2O, CH4 and CO2 reacted mainly to elevated O3, while the fluxes of CO2 also responded to elevated CO2. However, the fluxes did not show any marked response when elevated O3 and CO2 were combined. N2O and CO2 emissions were best explained by soil water content and air and soil temperatures, and they were not clearly associated with potential nitrification and denitrification. Our results suggest that the increasing O3 and/or CO2 concentrations may affect the N2O, CH4 and CO2 fluxes from the soil, but longer study periods are needed to verify the actual consequences of climate change for greenhouse gas emissions.  相似文献   

14.
The Intergovernmental Panel of Climate Change (IPCC) has concluded that the greenhouse gases carbon dioxide (CO2) and tropospheric ozone (O3) are increasing concomitantly globally. Little is known about the effect of these interacting gases on growth, survival, and productivity of forest ecosystems. In this study we assess the effects of three successive years of exposure to combinations of elevated CO2 and O3 on growth responses in a five trembling aspen (Populus tremuloides) clonal mixture in a regenerating stand. The experiment is located in Rhinelander, Wisconsin, USA (45 degrees N 89 degrees W) and employs free air carbon dioxide and ozone enrichment (FACE) technology. The aspen stand was exposed to a factorial combination of four treatments consisting of elevated CO2 (560 ppm), elevated O3 (episodic exposure-90 microl l(-1) hour(-1)), a combination of elevated CO2 and O3, and ambient control in 30 m treatment rings with three replications. Our overall results showed that our three growth parameters including height, diameter and volume were increased by elevated CO2, decreased by elevated O3, and were not significantly different from the ambient control under elevated CO2 + O3. However, there were significant clonal differences in the responses; all five clones exhibited increased growth with elevated CO2, one clone showed an increase with elevated O3, and two clones showed an increase over the control with elevated CO2 + O3, two clones showed a decrease, and one was not significantly different from the control. Notably. there was a significant increase in current terminal shoot dieback with elevated CO2 during the 1999-2000 dormant season. Dieback was especially prominent in two of the five clones, and was attributed to those clones growing longer into the autumnal season where they were subject to frost. Our results show that elevated O3 negates expected positive growth effects of elevated CO2 in Populus tremuloides in the field, and suggest that future climate model predictions should take into account the offsetting effects of elevated O3 on CO2 enrichment when estimating future growth of trembling aspen stands.  相似文献   

15.
This study considers the characteristics of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)) and sulfur dioxide (SO(2)) in two major South Korean cities, including the capital city of Seoul, over a time period of 7-8 years. Changes in the annual mean and percentiles of the daily 1-h maximum and other hour-based concentrations varied according to the compound and city type. Seasonal variations varied according to the compound, yet not with the city type. Both Seoul and Taegu exhibited lower O(3) concentrations in July compared to other summer months. There was a high degree of correlation between the daily 1- and 8-h maximum or daily mean concentrations of all compounds in both cities, with an R(2) of 0.66-0.90 at p<0.0001. It was indicated that for CO and O(3), the 8-h standard was more stringent than the 1-h standard, while for NO(2) and SO(2), the 1-h standard was more stringent than the 24-h standard. The correlation coefficients between the daily 1-h maximum and daily mean concentrations decreased as the maximum concentration values of NO(2), O(3 ), and SO(2) increased in the two cities. For all the target compounds, Seoul recorded a substantially higher frequency of days with concentrations above the relevant 1-, 8-, and 24-h standards compared to Taegu.  相似文献   

16.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

17.
Bahm K  Khalil MA 《Chemosphere》2004,54(2):143-166
A chemistry model of the global troposphere is presented which focuses on the hydroxyl radical, OH. Global distributions of OH are calculated based on known chemical reaction pathways, experimentally measured values of precursor species O3, H2O, NOx (defined as NO+NO2), CO, CH4, and actinic flux (which includes the effects of cloud cover and O3 column absorption). Model grid resolution is 1 km in altitude by 10 degrees latitude, and zonally divided into land or ocean. Species are calculated as seasonal averages. Global annual mean OH in the troposphere (up to 14 km altitude) is calculated to be 9.2 x 10(5) molcm(-3) with averages of 9.8 x 10(5) in the northern hemisphere, and 8.5 x 10(5) in the southern hemisphere. Global CO and CH(4) oxidation rates by OH are calculated to be 1840 Tgyear(-1) and 580 Tgyear(-1), respectively. OH is found to be most sensitive to O3 and H2O concentrations, as well as to the photolysis rate of O3 to O1D. Sensitivity of CO and CH4 oxidation rates to cloud presence shows an inverse relationship to cloud amount and optical depth. Model results are shown to be consistent with results from two other published models.  相似文献   

18.
BACKGROUND: Cement factories are major pollutants for the surrounding areas. Inert dust deposition has been found to affect photosynthesis, stomatal functioning and productivity. Very few studies have been conducted on the effects of cement kiln dust on the physiology of perennial fruit crops. Our goal was to study some cement dust effects on olive leaf physiology.effects on olive leaf physiology. On METHODS: Cement kiln dust has been applied periodically since April 2003 onto olive leaves. Cement dust accumulation and various leaf physiological parameters were evaluated early in July 2003. Measurements were also taken on olive trees close to the cement factory. RESULTS: Leaf dry matter content and specific leaf weight increased with leaf age and dust content. Cement dust decreased leaf total chlorophyll content and chlorophyll a/chlorophyll b ratio. As a result, photosynthetic rate and quantum yield decreased. In addition, transpiration rate slightly decreased, stomatal conductance to H2O and CO2 movement decreased, internal CO2 concentration remained constant and leaf temperature increased. DISCUSSION: The changes in chlorophyll are possibly due to shading and/or photosystem damage. The changes in stomatal functioning were possibly due to dust accumulation between the peltates or othe effects on stomata. CONCLUSIONS: Dust (in this case from a cement kiln) seems to cause substantial changes to leaf physiology, possibly leading to reduced olive productivity. RECOMMENDATIONS: Avoidance of air contamination from cement factories by using available technology should be examined together with any possible methodologies to reduce plant tissue contamination from cement dust. PERSPECTIVES: Longterm effects of dust (from cement kiln or other sources) on olive leaf, plant productivity and nutritional quality of edible parts could be studied for conclusive results on dust contamination effects to perennial crops.  相似文献   

19.
Single Scots pine (Pinus sylvestris L.) trees, aged 30 years, were grown in open-top chambers and exposed to two atmospheric concentrations of ozone (O3; ambient and elevation) and carbon dioxide (CO2) as single variables or in combination for 3 years (1994-1996). Needle growth, respiration and nitrogen content were measured simultaneously over the period of needle expansion. Compared to ambient treatment (33 nmol mol(-1) O3 and 350 micromol mol(-1) CO2) doubled ambient O3 (69 nmol mol(-1)) significantly reduced the specific growth rates (SGRs) of the needles in the early stage of needle expansion and needle nitrogen concentration (N1) in the late stage, but increased apparent respiration rates (ARRs) in the late stage. Doubled ambient CO2 (about 650 micromol mol(-1)) significantly increased maximum SGR but reduced ARR and N1 in the late stage of needle expansion. The changes in ARR induced by the different treatments may be associated with treatment-induced changes in needle growth, metabolic activities and turnover of nitrogenous compounds. When ARR was partitioned into its two functional components, growth and maintenance respiration, the results showed that neither doubled ambient O3 nor doubled ambient CO2 influenced the growth respiration coefficients (Rg). However, doubled ambient O3 significantly increased the maintenance respiration coefficients (Rm) regardless of the needle development stage, while doubled ambient CO2 significantly reduced Rm only in the late stage of needle expansion. The increase in Rm under doubled ambient O3 conditions appeared to be related to an increase in metabolic activities, whereas the decrease in Rm under doubled ambient CO2 conditions may be attributed to the reduced N1 and turnover rate of nitrogenous compounds per unit. The combination of elevated O3 and CO2 had very similar effects on growth, respiration and N1 to doubled ambient O3 alone, but the interactive mechanism of the two gases is still not clear.  相似文献   

20.
While researchers have linked acute (less than 12-hr) ambient O3, PM2.5, and CO concentrations to a variety of adverse health effects, few studies have characterized short-term exposures to these air pollutants, in part due to the lack of sensitive, accurate, and precise sampling technologies. In this paper, we present results from the laboratory and field evaluation of several new (or modified) samplers used in the "roll-around" system (RAS), which was developed to measure 1-hr O3, PM2.5, and CO exposures simultaneously. All the field evaluation data were collected during two sampling seasons: the summer of 1998 and the winter of 1999. To measure 1-hr O3 exposures, a new active O3 sampler was developed that uses two nitrite-coated filters to measure O3 concentrations. Laboratory chamber tests found that the active O3 sampler performed extremely well, with a collection efficiency of 0.96 that did not vary with temperature or relative humidity (RH). In field collocation comparisons with a reference UV photometric monitor, the active O3 sampler had an effective collection efficiency ranging between 0.92 and 0.96 and a precision for 1-hr measurements ranging between 4 and 6 parts per billion (ppb). The limits of detection (LOD) of this method were 9 ppb-hr for the chamber tests and approximtely 16 ppb-hr for the field comparison tests. PM2.5 and CO concentrations were measured using modified continuous monitors--the DustTrak and the Langan, respectively. A size-selective inlet and a Nafion dryer were placed upstream of the DustTrak inlet to remove particles with aerodynamic diameters greater than 2.5 microm and to dry particles prior to the measurements, respectively. During the field validation tests, the DustTrak consistently reported higher PM2.5 concentrations than those obtained by the collocated 12-hr PM2.5 PEM samples, by approximately a factor of 2. After the DustTrak response was corrected (correction factor of 2.07 in the summer and 2.02 in the winter), measurements obtained using these methods agreed well with R2 values of 0.87 in the summer and 0.81 in the winter. The results showed that the DustTrak can be used along with integrated measurements to measure the temporal and spatial variation in PM2.5 exposures. Finally, during the field validation tests, CO concentrations measured using the Langan were strongly correlated with those obtained using the reference method when the CO levels were above the LOD of the instrument [approximately 1 part per million (ppm)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号