首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
星云湖是典型的蓝藻型富营养化湖泊,为了解星云湖藻量昼夜变化节律及垂直分布情况,2013年8月29日—30日,每隔2h对星云湖藻类进行分层采样,分析了各样品叶绿素a含量和藻类密度。结果表明:同一时间点下,各层藻量参差不齐,24h内各层藻量随时间推移起伏变化,上层藻量昼夜变化曲线呈典型的双峰型,峰值分别出现在14时和2时左右;上层藻量变化与水温呈显著正相关,白天藻类主要分布于水体上层(叶绿素a含量和藻类密度分别为180.43±24.38mg/m3和46670.2±6631.9×104cells/L),夜晚上层藻量明显下降(叶绿素a含量和藻类密度分别为156.81±14.67mg/m3和40154.4±7694.6×104cells/L);夜晚,各层水体藻量虽然起伏变化,但总体上,方差分析表明各层藻量无显著差异。  相似文献   

2.
淀山湖水质富营养化和微囊藻毒素污染水平   总被引:21,自引:5,他引:16  
研究淀山湖不同季节水体中总磷(TP)、总氮(TN)、pH、水温、透明度(SD)、叶绿素a(Chl-a)含量和优势藻种等富营养化相关指标;在培养条件下,研究不同温度、光照、氮磷浓度对铜绿微囊藻的生长及微囊藻毒素LR(MC-LR)产生的影响;研究藻细胞密度和微囊藻毒素LR浓度的相关关系.结果表明:淀山湖水质已呈富营养化状态,春末和夏季水质和水文条件适合藻类生长.湖水TN和TP年平均值分别达1.93mg/L和0.18mg/L,TN和TP的年超标率达93.5%和92.2%.TP的高峰期比施肥的高峰期延迟出现约一个月,说明沿湖农业对富营养化指标的影响较大.淀山湖常年生长的藻类分别是蓝绿藻、硅藻、隐藻和裸藻等,夏季水华中可见污染指示藻如微囊藻、鱼腥藻和针杆藻等产毒藻.培养条件下,铜绿微囊藻在25℃和3000lx时生长最快,但产毒量却分别在20℃和5000lx时达到最大值;合适其生长和产毒的氮、磷浓度分别为650μmol/L和6.5μmol/L.现场和实验室条件下,均发现磷为藻类生长的限制因子,微囊藻毒素-LR浓度与藻细胞密度或铜绿微囊藻细胞密度之间存在正相关关系,提示可以用藻细胞密度来估算水中毒素的浓度.  相似文献   

3.
异龙湖淡水藻类共4门36种,其中包括蓝藻门11种,绿藻门17种,裸藻门1种,硅藻门7种。水体藻类密度极高,在200×104~450×104cell/L间。其中拟柱胞藻(Cylindrospermopsis raciborskii)为优势种,形成水华,为水华藻种。水华藻拟柱胞藻藻细胞密度与p H值呈正相关关系,可能与其在繁殖生长中会分泌生物碱,使水体p H值升高有关。异龙湖水体藻类密度空间分布呈西部较高,东部较低的特征,主要受人类活动排放的污染物影响。  相似文献   

4.
针杆藻属(Synedra)是常见的淡水藻类,饮用水源中针杆藻属的暴发式增长会严重影响水厂正常运行.为明确南水北调东线调蓄湖泊针杆藻属的时空分布特征及其与环境因子的相关性,于2011年3月—2013年5月在东线四湖(即洪泽湖、骆马湖、南四湖和东平湖)逐月采样进行调查研究.结果表明,监测期内洪泽湖、骆马湖、南四湖和东平湖针杆藻属密度最大值分别为442.0×104、549.3×104、301.6×104和795.4×104 L-1,尖针杆藻(Synedra acus)是东线四湖针杆藻属的优势种.非度量多维尺度(non-metric multi-dimensional scaling,NMDS)分析表明,东线四湖针杆藻属的分布特征存在一定差异,东平湖和骆马湖针杆藻属分布特征更加相似.Pearson相关性分析(Pearson correlation analysis)表明,影响东线四湖针杆藻属生长的环境因子主要是表层水温、透明度、ρ(DO)和ρ(TN),其中表层水温是最主要的影响因素.   相似文献   

5.
将6组不同初始种群密度的溶藻细菌L7(Bacillus cereus)菌悬液和添加了溶藻细菌L7胞内、外代谢产物的2216E培养液加入到中肋骨条藻(Skeletonema costatum)悬浮液中,将5组不同初始种群密度的中肋骨条藻悬浮液和添加了中肋骨条藻胞内外代谢产物的f/2-Si培养液加入到溶藻细菌L7悬浮液中,探讨溶藻细菌L7和中肋骨条藻的相互作用。在第7天时,L7胞外代谢产物使中肋骨条藻细胞数量下降95.42%,表现为间接溶藻,胞内代谢产物使藻细胞数量增长361.47%,表现为加快藻增长。L7初始种群密度为3.89×106 cfu/mL和3.89×107 cfu/mL时,在第7天藻细胞数量均下降80%以上;初始种群密度为3.89×102~3.89×104 cfu/mL时,在第7天L7促进藻生长。中肋骨条藻种群密度为3.89×103 cells/L、3.89×104 cells/L及3.89×106 cells/L时,最迟于第7天,L7种群密度开始低于对照组,即中肋骨条藻能够在一段时间后抑制L7生长。从第4天开始,中肋骨条藻胞外代谢产物使L7种群密度低于对照组,即中肋骨条藻对L7产生抑制作用;胞内代谢产物对L7生长的影响不明显。  相似文献   

6.
在12L玻璃瓶中,对富营养底泥培养条件下螺旋鱼腥藻生长时土嗅素的产生情况进行了研究.结果表明,随着螺旋鱼腥藻生物量增加,土嗅素产生量增大,最大浓度可达626ng/L,远超出人体可感知浓度(10ng/L).嗅味物质在螺旋鱼腥藻生物量出现最大值前76h达到最高浓度.生长过程中,土嗅素主要分布在螺旋鱼腥藻细胞内,占总含量的85%~95%,远高于胞外含量.培养初期底泥刚向水体中释放氮时,藻细胞更倾向利用类异戊二烯合成土嗅素,导致土嗅素与叶绿素含量比值增大;随着水体中的氮含量逐渐充足,土嗅素与叶绿素含量比值趋于稳定,维持在0.0015左右.因此,当野外水体的氮含量充分时,螺旋鱼腥藻土嗅素产生量的变化可通过叶绿素含量的变化得到反映.  相似文献   

7.
为了探讨春季藻类快速生长的机制,研究较低温度下氨氮对淡水浮游藻类生长及群落结构变化的影响,对南开大学新开湖水体藻类进行了室内生态模拟试验研究.在10℃、125μmol·m·s-1光强条件下,培养液中氨氮最终浓度设置为1.0、1.5、2.0、2.5、3.0mg·L-1和对照组(不添加氨氮),每隔1~2天加入氨氮至初始设定值,培养时间为26d.结果表明,浮游藻类在1.0mg·L-1组生长最好,最大生长密度为1.53×105cells·L-1,高于对照组;浮游藻类在高于2.0mg·L-1处理组中生长明显受到抑制,抑制作用随着氨氮浓度的增大而增大,其中3.0mg·L-1处理组的最大生物量仅为5.4×104cells·L-1.随着培养时间的进行硅藻逐渐取代绿藻而成为绝对优势藻,随着藻类的生长,粗刺四刺藻(Treubaria crassispina)在所有处理组中由优势种而逐渐消失,近缘针杆藻(Saffinis affinis)和新月藻(Closterium lunula)在培养后期逐渐成为优势种,但在不同氨氮浓度下表现出不同生长密度.除1.0mg·L-1处理组外,其它处理组中的物种多样性指数差异不显著(p>0.05).氨氮影响浮游藻类的生长,影响优势种的变化,并且对浮游藻类的群落结构变化有一定的影响.  相似文献   

8.
采用现场调查与模拟实验相结合的方法。白洋淀夏季优势沉水植物金鱼藻附生藻类的群落结构、现存量和光合作用速率,分析了附生生物对金鱼藻光合速率的影响,探讨了附生生物在湖泊草型生态系统和藻型生态系统相互转化过程中的作用。结果表明,白洋淀不同水域的营养盐浓度差异较大。东关码头区域营养盐较高水质较差,总氮(TN 6.02 mg/L)和总磷(TP 0.94 mg/L)均异常偏高;采蒲台水域营养盐水平较低水质较好,氮磷(TN 2.08 mg/L,TP 0.06 mg/L)的含量均较低;鸳鸯岛、寨南、圈头3个样点水体营养盐浓度介于东关码头与采蒲台之间。水质状况与附着藻类密度、多样性及对金鱼藻的光合抑制率密切相关,营养盐浓度低的采蒲台样点附着在金鱼藻上的藻类密度为134.5×104ind/L,经鉴定优势种为月形短缝藻(Eunotia lunaris):附着藻类的多样性指数为0.53,对其金鱼藻光合作用的抑制率仅为20.0%。而营养盐浓度高的东关码头水域附着藻类密度为375.7×104ind/L,多样性指数为0.52,通过镜检该样点附着藻类的优势种同为月形短缝藻,其对金鱼藻的光合抑制达到79.1%。研究发现在营养盐高的水域附着藻类对金鱼藻相对营养盐低的水域抑制率较高,附着藻类的多样性也相对较大。说明营养盐的高低对附着藻类的密度、多样性及其对金鱼藻的光合抑制率有密切联系。  相似文献   

9.
在淀山湖318国道与威尼斯别墅邻近水域建立试验区,分别进行了水生植被恢复与鱼类-贝类控藻试验。基于2009年3月-2010年5月的监测资料,依据修正的卡尔森营养状态指数评价了试验区水体营养状态,分析了采用水生植被恢复和物理-生物联合控藻措施对试验区水质的改善情况,并分析了两种措施对试验区水体浮游植物的影响。结果显示:(1)318和威尼斯试验区内样点的卡尔森指数均低于对照样点D和H,表明恢复水生植被和放养滤食性鱼类、贝类可以明显地净化水质、降低水体的富营养化程度;(2)318试验区内样点的年平均卡尔森指数低于威尼斯试验区,表明恢复水生植被比放养滤食性鱼类、贝类相比效果更好。(3)318试验区的藻类密度年均值40.55×104个/L小于威尼斯试验区的藻类密度44.66×104个/L,318试验区平均的藻类多样性指数2.60明显高于威尼斯试验区平均的藻类多样性指数2.49,表明318试验区藻类的多样性水平较高,而藻类密度较小,面临蓝藻爆发的威胁比威尼斯试验区小。  相似文献   

10.
2008年1~6月对澜沧江干流的漫湾水电站和大朝山水电站库区进行浮游藻类调查.两库区共检出浮游藻类7门28属.藻细胞密度变化范围:大朝山库区0.06×106~2.28×106个/L,漫湾库区0.12×106~4.86×106个/L.藻类的组成和数量随环境和水文条件呈现一定的变化,1、2月份主要是蓝藻、硅藻、绿藻,3~6月份主要以硅藻为主,漫湾库区的总藻数明显高于大朝山库区.  相似文献   

11.
重点选择了四种具有一定杀菌作用的制剂材料 ,考查了它们各自的杀菌效果以及将它们复配后的杀菌效果 ,通过大量实验证明 ,其中某些杀菌剂复配后比单一使用时杀菌效果好 ,其中复配杀菌剂 660 1 ,在浓度为 2 0 / mg· L- 1时 ,杀菌率达 99.99% ,大肠菌群数由 1 .2× 1 0 8CFU/ L下降到 1 .0× 1 0 4CFU/ L。这一结果为清除污水中有害菌群的研究提供了有效的方法 ,同时为研制复配型杀菌剂指出了方向  相似文献   

12.
为比较分析渤、黄海夏季浮游植物的群落结构特征,本研究于2013年夏季在渤海、北黄海和南黄海(31.19 °N-39.82 °N,118.89 °E-125.65 °E)设50个站位采集水样,研究各海域浮游植物的种类组成、丰度分布、优势种和群落多样性。结果显示,种类数和香农?威纳指数均为南黄海最高,北黄海次之,渤海最低,多样性高值区集中在山东半岛南部海域、南黄海中部和长江口毗邻海区。研究海域水柱浮游植物丰度为0.01×103~418.2×103 cells/L,渤海、北黄海和南黄海的平均值分别为(14.6±12.8)×103 cells/L、(11.5±14.9)×103 cells/L和(35.7±92.3)×103 cells/L。甲藻和硅藻是浮游植物的优势类群,甲藻分别占渤海、北黄海和南黄海水柱总丰度的52.7%、26.4%和77.9%;硅藻分别占渤海、北黄海和南黄海水柱总丰度的46.6%、73.1%和22.1%。渤海和南黄海浮游植物多分布于表层及次表层,北黄海浮游植物多分布于中层至底层。  相似文献   

13.
2016年5月、8月、11月和2017年2月在防城河口湾海域开展了浮游植物群落和环境调查,研究了河口湾浮游植物群落结构的空间和季节变化及其与主要环境因子的关系。结果表明:全年共记录了浮游植物162种(含变种、变型),包括硅藻门123种,甲藻门29种,绿藻门6种,金藻门3种,隐藻门1种,其中,春季104种,夏季86种,秋季93种,冬季79种。年均细胞丰度为41.34×104 cells/L,秋季(100.18×104 cells/L)>春季(48.04×104 cells/L)>夏季(16.03×104 cells/L)>冬季(1.11×104 cells/L),各季节高丰度区的主要分布海域不同。年度优势种是拟弯角毛藻(Chaetoceros pseudocurvisetus)、中肋骨条藻(Skeletonema costatum)和热带骨条藻(Skeletonema tropicum),中肋骨条藻在春季和夏季、拟弯角毛藻在秋季和冬季为最大优势种。种数变化范围为12~43种,多样性指数(H′)为0.326~3.918,丰富度指数(d)为0.782~3.789,均匀度指数(J)为0.086~0.784。群落优势种的季节更替率为50.0%~88.9%,群落更替指数为55.7%~97.4%,物种迁移指数为?12.2%~19.5%。聚类分析、相似性分析及相似性百分比分析表明浮游植物群落的时空异质性较高。冗余分析显示,春季影响浮游植物群落结构变化的主要因子是盐度, 夏季是氨氮和水深,秋季是总磷,冬季是溶解氧、无机磷、水色和水深。  相似文献   

14.
广东沿岸不同海域浮游植物群落结构特征的比较分析   总被引:1,自引:0,他引:1  
根据2013年9月茂名、珠海及陆丰海域调查数据,对3个海域浮游植物种类组成、丰度分布、优势种组成及多样性等群落结构特征进行了分析。结果显示:3个海域共鉴定浮游植物4门112种,其中硅藻87种,占种类数的77.68%;甲藻17种,占15.18%;绿藻5种,占4.46%;蓝藻3种,占2.68%。其中茂名海域出现了52种,珠海海域67种,陆丰海域63种。3个海域Jaccard种类相似性指数茂名与珠海海域最高0.38。浮游植物平均丰度茂名海域最高(356.21×104/L),其次为荷包岛海域(25.13×104/L),陆丰海域最低(1.66×104/L)。3个海域优势种组成差异较大,共出现了10种,仅柔弱拟菱形藻(Peseudo-nitzschia delicatissima)为共同种类;优势种优势度指数茂名海域极高,高达0.99,其次为陆丰海域0.59。Shannon-Wiener多样性指数H'、Pielou均匀度指数J'和Margalef物种丰富度指数D珠海(2.98、0.60、1.13)、陆丰(1.57、0.35、1.03)高于茂名(0.11、0.03、0.73)。3个海域水质状况的生物多样性指数综合评价显示,珠海海域水质状况最好,群落结构最稳定,茂名海域则最差。  相似文献   

15.
2012—2013年于春、夏、秋、冬四季对小溪港进行4次水环境质量调查,利用种类组成、种群数量、优势种、Shannon-Weiner多样性指数和SI(污生指数)等指标分析小溪港浮游植物群落特征,并对小溪港水环境质量状况进行评价. 结果表明:小溪港浮游植物共8门51种,其中绿藻门的种类数最多,共26种,占总种数的50.98%;其次为硅藻门,共9种,占17.65%;蓝藻门5种,占9.80%. 浮游植物数量年均值为184.16×104 L-1,主要为蓝藻门、绿藻门和硅藻门;峰值出现在夏季,为292.43×104 L-1,之后为春、秋和冬季. 小溪港的优势种共4门7种,分别为蓝藻门的微囊藻(Microcystis spp.),绿藻门的星芒衣藻(Chlamydomonas stellata)、丝藻(Planctonema sp.)、小球藻(Chlorella vulgaris),硅藻门的小环藻(Cyclotella spp.),隐藻门的啮蚀隐藻(Cryptomonas erosa)、尖尾蓝隐藻(Chroomonas acuta). Shannon-Weiner多样性指数、Margalef丰富度指数和Pielou均匀度指数均显示出明显的季节变化规律,其年均值分别为1.81、1.55、0.51;SI年均值为2.44. 总体上,小溪港水质污染状况为中污染.   相似文献   

16.
广东南水水库富营养化与浮游植物群落动态   总被引:2,自引:0,他引:2  
南水水库是广东省第三大水库,属饮用水源一级保护区。于2011年1~12月对该水库的水文、水质和浮游植物进行了每月一次、为期一年的调查,采用营养状态指数(TSI)进行了水质综合评价,分析了浮游植物群落的动态变化规律,选择冗余分析(RDA)研究了影响浮游植物群落结构的环境因素。结果表明:南水水库现为贫营养型,全年浮游植物的种类变化不大,共鉴定出浮游植物6门50属(种),优势种以适应贫营养的种类为主,且浮游植物的丰度、生物量及叶绿素a浓度都较低,其均值分别为8.72×104~2.51×105cells/L、0.031~0.423 mg/L和0.83~2.80 mg/L。浮游植物群落主要以硅藻、甲藻和绿藻种群为主,硅藻种群全年占优势,甲藻和绿藻在不同季节优势度有变化,体现出从硅藻型到硅藻-甲藻型,到硅藻-绿藻型,再到硅藻-甲藻型的变化过程。温度、氮磷比和水体稳定性的季节变化是影响上述浮游植物群落动态的主要因子。  相似文献   

17.
用物理-生态集成技术局部控制富营养化   总被引:2,自引:0,他引:2  
利用物理-生态工程集成技术对贵州省百花湖(水库)麦西河河口富营养水体进行局部生态修复.结果表明,同期内,富营养化指标总氮、总磷、叶绿素和化学耗氧量工程区内明显低于工程区外,最大相差分别为0.61 mg.L-1、0.041 mg.L-1、23.06μg.L-1和8.4 mg.L-1;透明度工程内明显高于工程外,最大超过1.50 m;富营养化指数工程区内明显要低于工程区外,最大相差20,工程区外属于中-富营养化,而工程区内属于贫-中营养化;浮游植物丰度和生物量工程区内低于工程区外,工程区外浮游植物丰度到达2 125.5×104cells.L-1,而工程区内仅33×104cells.L-1.工程区外浮游植物生物量以蓝藻为主,硅藻和甲藻的比例较小;在工程区内,除了部分蓝藻外,硅藻和甲藻的比例较高,还有一部分裸藻.经过1年多的运行,物理-生态集成技术水质改善生态工程有效地控制了工程区内水华的发生,改变了浮游植物群落结构,控制了富营养化趋势,物理-生态集成技术适合贵州高原河口富营养化水质改善.  相似文献   

18.
大亚湾沉积物磷的形态特征及其潜在可释放性   总被引:1,自引:0,他引:1  
沈园  张景平  张霞  刘松林  黄小平 《海洋环境科学》2017,36(5):641-647, 661
为了认知沉积物磷释放对海湾磷负荷的影响,本文以SMT分级方法分析了大亚湾表层沉积物中磷的形态结构,探讨了沉积物磷的释放潜力的时空性差异及其影响因素。结果表明,大亚湾沉积物中总磷(TP)的平均含量为429.65×10-6,无机磷(IP)、有机磷(OP)的平均含量分别为286.57×10-6和143.08×10-6,IP占TP的67.83%;IP以酸提取态磷(HCl-P)为主,HCl-P的平均含量为237.10×10-6,碱提取态磷(NaOH-P)的平均含量为56.13×10-6;生物有效磷(OP+NaOH-P)占到总磷的45.63%。大亚湾沉积物磷具有较高的释放潜力,并呈现出夏季高于冬季,近岸区域高于湾中心及湾口的变化规律。相关性分析表明,沉积物粒径、氧化还原电位及有机质含量(尤其是浮游藻类的自生有机质)对沉积物磷的释放潜力有较大影响。  相似文献   

19.
为探明江苏海涂(夏季)浮游植物种类组成与数量分布特征,于2014年8月对江苏海涂进行浮游植物现场采样调查。调查共鉴定浮游植物4门73种,平均密度8.44×106 ind./m3,其中硅藻68种,为主要优势类群,平均密度5.65×106 ind./m3; 甲藻4种,平均密度4.75×104 ind./m3; 金藻与绿藻各1种,平均密度分别为92.36 ind./m3和51.31 ind./m3。按优势度高低,优势种分别为中肋骨条藻(Skeletonema costatum)(Y=0.48)、短角弯角藻(Eucampia zoodiacus)(Y=0.10)和蛇目圆筛藻(Coscinodiscus argus)(Y=0.02),平均密度分别为3.23×106 ind./m3、1.44×106 ind./m3和1.28×105 ind./m3。平均多样性指数1.48。浮游植物种数与密度总体沿岸高于近岸,南部高于北部,辐射沙脊群平均多样性指数明显高于长江口北部、废黄河三角洲和海州湾。随着入海营养物质的不断增加,海涂浮游植物群落种类数减少,多样性降低,优势种单一化,中肋骨条藻、短角弯角藻等小型赤潮种成为主要优势种。赤潮优势种密度的空间分布显示赤潮高风险区主要位于长江口北部、辐射沙脊群南部、射阳河口、中山河口与灌河口,江苏海涂赤潮风险总体南部高于北部。  相似文献   

20.
Water transfer is becoming a popular method for solving the problems of water quality deterioration and water level drawdown in lakes. However, the principle of choosing water sources for water transfer projects has mainly been based on the effects on water quality, which neglects the influence in the variation of phytoplankton community and the risk of algal blooms. In this study, algal growth potential (AGP) test was applied to predict changes in the phytoplankton community caused by water transfer projects. The feasibility of proposed water transfer sources (Baqing River and Jinsha River) was assessed through the changes in both water quality and phytoplankton community in Chenghai Lake, Southwest China. The results showed that the concentration of total nitrogen (TN) and total phosphorus (TP) in Chenghai Lake could be decreased to 0.52 mg/L and 0.02 mg/L respectively with the simulated water transfer source of Jinsha River. The algal cell density could be reduced by 60%, and the phytoplankton community would become relatively stable with the Jinsha River water transfer project, and the dominant species of Anabaena cylindrica evolved into Anabaenopsis arnoldii due to the species competition. However, the risk of algal blooms would be increased after the Baqing River water transfer project even with the improved water quality. Algae gained faster proliferation with the same dominant species in water transfer source. Therefore, water transfer projects should be assessed from not only the variation of water quality but also the risk of algal blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号