首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
厌氧、缺氧、好氧多级交替SBR脱氮除磷试验研究   总被引:2,自引:0,他引:2  
以实际生活污水为研究对象,采用厌氧、缺氧、好氧多级交替序批式反应器(SBR)工艺,通过曝气时间、交替次数的凋整对该系统的脱氮除磷效果进行了研究,最终将工艺确定为厌氧1.5 h-好氧1.0h-缺氧1.0h-好氧20 min-缺氧 1.0 h-好氧20min.试验结果表明:该系统与传统的SBR相比节省了44%的曝气量,且对COD、TN、TP去除率分别达85%、78%、99.5%,同时发现曝气过程 NO2-N和NO3-N的累积可能会对好氧吸磷产生抑制作用.  相似文献   

2.
以人工配水为研究对象,采用厌氧/好氧/缺氧/好氧交替运行的序批式反应器,研究了(AO)2SBR系统同步脱氮除磷的效果,并结合批式实验讨论了同步脱氮除磷的反应机理。研究结果表明,该系统以厌氧1.5 h、好氧1 h、缺氧3h、好氧0.5 h的方式运行,在DO=2.5 mg/L,SRT=15 d的条件下,具有良好的脱氮除磷效果,配水中的总氮、总磷、COD和总有机碳的去除率分别为96.26%、99.87%、90.46%和85.57%。批式实验表明,合成的内碳源越多,氨氮的硝化越充分,反硝化除磷越多。  相似文献   

3.
提出一种高效脱氮除磷的新工艺,即厌氧-交替O/A的序批式膜生物反应器.在HRT为8.4 h、交替O/A时间为10min/10 min时,系统氨氮、总氮、总磷的平均去除率分别达到99.57%、89.92%、93.26%.典型周期试验证明.频繁的O/A环境更利于系统高效脱氮除磷,且O/A交替越频繁,系统中反硝化聚磷菌(DPAO)占聚磷菌(PAO)的比例(即缺氧吸磷速率与好氧吸磷速率的比值)越大.当交替O/A时间为10 min/10 min时.系统中DPAO占PAO的比例为70.87%,比交替O/A时间为30 min/30 min时提高了66%.  相似文献   

4.
低曝气下PAC强化SBR工艺同步脱氮除磷   总被引:1,自引:0,他引:1  
采用序批式反应器(SBR)处理模拟生活污水,研究不同曝气量(30、24、18和12 L/h)下活性污泥同步脱氮除磷规律,并在最佳曝气量下,比较了粉末活性炭-序批式反应器(PAC-SBR)和SBR的脱氮除磷效率,分析了低曝气下PAC-SBR的运行特性和优越性。实验结果表明,当曝气量为24 L/h时,SBR内出水效果较好,其COD、TN和TP的平均去除率分别可以达到90.02%、81.13%和88.12%。在这个最佳曝气量下,PAC-SBR具有明显的优势,其COD、TN和TP的平均去除率均高于SBR,并且PAC-SBR具有较好的污泥沉降性能和较高的活性污泥浓度。在PAC-SBR中,活性污泥以PAC作为微生物载体强化了生物降解效果,并改善了低曝气下污泥絮体的结构,促使反应器内先后形成缺氧-厌氧-微氧/缺氧-缺氧的环境,利于同步硝化反硝化和反硝化聚磷,提高了PAC-SBR的同步脱氮除磷效率。  相似文献   

5.
UniFed SBR工艺除磷脱氮机理研究   总被引:2,自引:1,他引:2  
采用UniFed SBR工艺试验装置处理实际生活污水,确定了出水不受进水扰动影响的合适排水比.当将进水/排水时间固定为2 h,排水比不高于41.67%时,可以实现进水与出水的分离,保证良好的出水水质.通过试验分析了UniFed SBR工艺的除磷脱氮机理在于:进水/排水阶段在反应池底部先后发生了反硝化作用和厌氧释磷反应,后续曝气阶段发生硝化作用和好氧吸磷,因此通过该工艺,可实现同步除磷脱氮.  相似文献   

6.
反硝化除磷颗粒污泥培养方式的对比实验研究   总被引:1,自引:0,他引:1  
采用两完全相同的气升式间歇反应器(SBAR)进行反硝化除磷颗粒污泥培养方式的对比实验研究。R1始终以厌氧/好氧/缺氧(A/O/A)模式运行,在颗粒化的同时富集反硝化除磷菌(DPAOs);R2以厌氧/好氧(A/O)模式培养颗粒,待颗粒形成后加入缺氧段,形成A/O/A模式,强化富集DPAOs。结果表明,R2中颗粒化时间较短,但所形成颗粒的沉降速率和比重分别为30.4 m/h和1.022 g/cm3,低于R1培养颗粒的35.9 m/h和1.061 g/cm3;R1中颗粒对于COD、NH+4-N、TN和TP的平均去除率分别是86%、98%、82%和91%,高于R2中的86%、99%、74%和66%;反应器运行至183 d时,DPAOs所占比例分别为44.7%和20.9%。  相似文献   

7.
侧流除磷ERP-SBR新工艺在进水COD=338~527 mg/L、TN=40~60 mg/L、TP=8~11 mg/L的水质条件下,出水COD≤39 mg/L、NH3-N≤1.8 mg/L、TN≤5.8 mg/L、TP≤0.29 mg/L,且72%的总氮损失发生在好氧曝气阶段.在分析影响该工艺生物脱氮因素时发现:SBR反应器的DO时间分布是影响好氧生物脱氮和缺氧内碳源反硝化的重要因素;侧流除磷工艺特有的高浓度活性污泥、颗粒大且密实的污泥絮体有利于形成好氧生物脱氮过程所需要的微环境;控制较长的污泥龄有利于提高系统的好氧脱氮能力,SRT与好氧脱氮率之间具有良好的线性关系:ηODN(%)=0.89×SRT-5.74.  相似文献   

8.
在序批式活性污泥反应器(SBR)中快速富集聚磷菌(PAOs),考察PAOs中Candidatus Accumulibacter phosphatis(以下简称Accumulibacter)种群的除磷特性.结果表明,在水温(20.0士0.5)℃下控制厌氧初始pH为7.50~7.80,好氧段DO为2.0~4.0 mg/L,进水乙酸与丙酸摩尔比为3.0的条件下,PAOs能够在60 d内实现快速富集,荧光原位杂交检测(FISH)显示,Accumulibacter占全菌比例达到62.4%士4.7%;厌氧溶解性正磷酸盐(SOP)释放量(SOP.)与挥发性脂肪酸(VFA)吸收量(VFAa)的比值与活性污泥中Accumulibacter占全菌比例呈线性关系,说明全菌中Accumulibacter的相对数量对活性污泥的除磷特性具有显著影响;在长期没有硝酸盐的条件下培养的Accumulibacte反硝化除磷能力较弱,Accumulibacte不能有效驯化为反硝化聚磷菌(DPAOs).  相似文献   

9.
为了研究缺氧(75 min)-好氧(294 min)交替运行的SBR系统中除磷的原因,采用静态实验,对比了不同碳源、水质及运行环境下对磷的去除情况。实验结果表明,该SBR脱氮系统中的好氧段磷的减少是生物去除的结果。当供给碳源为丙酸-乙酸混合物(摩尔比为2∶1)、葡萄糖、淀粉或蛋白胨时,污泥都可将磷去除,去除效率依次降低;COD/NO3--N为8.77∶1(400 mg/L∶45.6 mg/L)时除磷效果明显好于5.41∶1(400 mg/L∶73.9 mg/L)和3.57∶1(400 mg/L∶112 mg/L);进水磷浓度为8 mg/L时,COD由50 mg/L增加到400 mg/L,污泥对磷的去除效果基本一样;完全的缺氧或完全的好氧环境下,污泥对磷的去除能力逐渐丧失。  相似文献   

10.
采用厌氧 缺氧SBR反应器对以硝酸盐作为电子受体的反硝化除磷过程进行了研究。结果表明 ,反硝化聚磷菌完全可以在厌氧 缺氧交替运行条件下得到富集。稳定运行的厌氧 缺氧SBR反应器的反硝化除磷效率 >90 % ,出水磷浓度 <1mg L。进水COD浓度对反硝化除磷的效率影响很大 ,在COD浓度 <180mg L时 ,进水COD浓度越高 ,除磷效率也就越高。较高浓度的进水COD浓度将导致有剩余的COD进入缺氧段 ,对反硝化吸磷构成不利影响。污泥龄为 16d时 ,厌氧 缺氧SBR反应器取得稳定和理想的反硝化除磷效果。污泥龄减少到 8d ,由于反硝化聚磷菌的流失导致反硝化除磷效率的下降。当污泥龄恢复到 16d时 ,经过一段时间的运行 ,反硝化聚磷菌重新得到富集 ,除磷效率恢复到 90 %以上。  相似文献   

11.
A laboratory-scale continuous-flow system with an anaerobic/anoxic/aerobic configuration was set up to study the effect of oxygen in the internal recycle stream; of particular interest was its performance of denitrifying phosphorus-accumulating organisms (DPAOs). It was found that, by using a degas device, the dissolved oxygen in the nitrate recycle stream was effectively decreased from 0.1 +/- 0.02 to 0.01 +/- 0.01 mg/L. This provided a favorable condition for DPAOs to grow under an anoxic condition and thus be sustained successfully in the system. When the degas device was removed from the system, the dissolved oxygen concentration in the anoxic reactor increased to 0.1 +/- 0.02 mg/L. The proliferation of the denitrifying glycogen-accumulating organisms (DGAOs) population and deterioration of DPAOs performance was observed. The increased population of DGAO/GAOs, which competed for the carbon source with DPAO/ PAOs, resulted in a poor performance of biological phosphorus removal.  相似文献   

12.
Two biological nutrient removal modes, consisting of anaerobic, anoxic, and oxic sequences, were tested in a full-scale sequencing batch reactor. The modes, identified as BNR-S1 and BNR-S2, had average total nitrogen removals of 84 and 89%, respectively, for the months of August to October. Over the same period, total phosphorus removals for BNR-S1 and BNR-S2 were 88 and 87%, respectively. In contrast, total nitrogen and total phosphorus removals for the regular aerobic mode were 54.7 and 44.7%, respectively. When the wastewater temperature changed from approximately 20 to 15 degrees C in the winter months, total nitrogen and total phosphorus removals for BNR-S2 were reduced to 81 and 70%, respectively. Total nitrogen effluent concentrations were between 2.5 and 4 mg-N/L (at approximately 20 degrees C), while the effluent total phosphorus concentrations were between 1 and 2 mg/L. The BNR-S2 mode was found to require less energy per kilogram of soluble chemical oxygen demand removed than the regular and BNR-S1 modes.  相似文献   

13.
The aim of this study was to expand the International Water Association Activated Sludge Model No. 2d (ASM2d) to account for a newly defined readily biodegradable substrate that can be consumed by polyphosphate-accumulating organisms (PAOs) under anoxic and aerobic conditions, but not under anaerobic conditions. The model change was to add a new substrate component and process terms for its use by PAOs and other heterotrophic bacteria under anoxic and aerobic conditions. The Gdansk (Poland) wastewater treatment plant (WWTP), which has a modified University of Cape Town (MUCT) process for nutrient removal, provided field data and mixed liquor for batch tests for model evaluation. The original ASM2d was first calibrated under dynamic conditions with the results of batch tests with settled wastewater and mixed liquor, in which nitrate-uptake rates, phosphorus-release rates, and anoxic phosphorus uptake rates were followed. Model validation was conducted with data from a 96-hour measurement campaign in the full-scale WWTP. The results of similar batch tests with ethanol and fusel oil as the external carbon sources were used to adjust kinetic and stoichiometric coefficients in the expanded ASM2d. Both models were compared based on their predictions of the effect of adding supplemental carbon to the anoxic zone of an MUCT process. In comparison with the ASM2d, the new model better predicted the anoxic behaviors of carbonaceous oxygen demand, nitrate-nitrogen (NO3-N), and phosphorous (PO4-P) in batch experiments with ethanol and fusel oil. However, when simulating ethanol addition to the anoxic zone of a full-scale biological nutrient removal facility, both models predicted similar effluent NO3-N concentrations (6.6 to 6.9 g N/m3). For the particular application, effective enhanced biological phosphorus removal was predicted by both models with external carbon addition but, for the new model, the effluent PO4-P concentration was approximately one-half of that found from ASM2d. On a PO4-P removal percentage basis, the difference was small, that is, 94.1 vs. 97.1%, respectively, for the ASM2d and expanded ASM2d.  相似文献   

14.
Wu CY  Peng YZ  Wang RD  Zhou YX 《Chemosphere》2012,86(8):767-773
The granulation of activated sludge was investigated using two parallel sequencing batch reactors (SBRs) operated in biological nitrogen and phosphorus removal conditions though the reactor configuration and operating parameters did not favor the granulation. Granules were not observed when the SBR was operated in biological nitrogen removal period for 30 d. However, aerobic granules were formed naturally without the increase of aeration intensity when enhanced biological phosphorus removal (EBPR) was achieved. It can be detected that plenty of positive charged particles were formed with the release of phosphorus during the anaerobic period of EBPR. The size of the particles was about 5-20 μm and their highest positive ζ potential was about 73 mV. These positive charged particles can stimulate the granulation. Based on the experimental results, a hypothesis was proposed to interpret the granulation process of activated sludge in the EBPR process in SBR. Dense and compact subgranules were formed stimulated by the positive charged particles. The subgranules grew gradually by collision, adhesion and attached growth of bacteria. Finally, the extrusion and shear of hydrodynamic shear force would help the maturation of granules. Aerobic granular SBR showed excellent biological phosphorus removal ability. The average phosphorus removal efficiency was over 95% and the phosphorus in the effluent was below 0.50 mg L−1 during the operation.  相似文献   

15.
对螺旋升流式反应器脱氮除磷及去除COD的运行效果进行了研究 ,该系统连续稳定运行 6个月的结果表明 ,能保证出水平均质量浓度TN小于 1 0mg/L ,TP小于 0 5 0mg/L ,COD小于 31mg/L ,对TN、TP和COD的去除率分别达 86 %、96 %和 94 %以上。并且对SUFR系统的污泥性能进行了分析 :(1 )螺旋升流特征使本反应系统中的污泥易于颗粒化 ;(2 )SUFR系统中的微生物种群具有多样性 ;(3)污泥在好氧反应器中表现出了同步硝化反硝化功能 ;(4 )污泥在缺氧反应器表现出了反硝化吸磷现象  相似文献   

16.
低溶解氧污泥微膨胀污染物去除性能的研究   总被引:3,自引:0,他引:3  
为了研究低溶解氧微膨胀状态下污染物的去除效果,采用SBR反应器,平均DO浓度为0.5~0.9 mg/L,通过好氧/缺氧(O/A)的运行方式,对污染物处理效果进行研究。结果表明:低溶解氧丝状菌污泥微膨胀状态下,SVI可稳定控制在200 mL/g左右,出水SS含量很低,COD去除率在80%以上,氨氮去除率90%以上,除磷效率在90%之上,出水水质良好,同时可以节约曝气量约46.7%。低溶解氧微膨胀状态下,可保证出水处理效果,污泥沉降性能影响小,同时可以节约动力费用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号