首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A short outline is given of the floristic composition, structure and distribution of coastal dune vegetation found at Malindi Bay, Kenya. The area was studied by air photo interpretation and field sampling to determine the relationship of plants to aeolian features. TWINSPAN classification was used to distinguish geomorphological units on the basis of their species composition. In this paper, an inventory and first quantitative analysis of vegetation distribution is presented. We identified 174 plant species from 62 families in the sand dunes and several plant communities are distinguished based on the species content and the connection with morphological units.Papilionaceae with 18 species andPoaceae with 17 species were the most represented families. A distinct zonal distribution of the plant communities was found. The most important plant species are the pioneer vegetation consisting ofHalopyrum mucronatum, Ipomoea pescaprae andScaevola plumieri. The woody shrub species which have colonized the established primary dunes and hummock dunes areCordia somaliensis, Pluchea discoridis, Tephrosia purpurea (dunensis). Succulent herbs were identified in the dune slacks and salt marsh that are moist and damp environments.  相似文献   

2.
Salt marsh succession after de-embankment was monitored on the East Frisian barrier island Langeoog by investigating permanent plots. Seventy years after embankment salt marsh plants were once again influenced mainly by the tidal regime. From 2002 to 2004 the former high marsh and glycophytic vegetation died out and was replaced by species of lower salt marsh zones. Nitrophytic halophytes like Suaeda maritima, Atriplex prostrata and Artemisia maritima established first because of the high nutrient content in the soil, a direct result of former vegetation decay. With decreasing nitrogen afterwards other species became more competitive. Until 2007 Atriplex portulacoides became more dominant in the lower marsh and Elymus athericus reached dominance in areas where grazing has been abandoned in the high marsh. The dynamics in the study area is much lower than in natural marshes due to the still existing drainage system. Therefore vegetation units with low species diversity are widespread.  相似文献   

3.
Salt marsh development on the coastal barrier island of Schiermonnikoog (The Netherlands) was compared with two other salt marsh systems in the Wadden Sea. Accretion rate, nitrogen accumulation and changes in plant species composition were investigated using chronosequences. The age of the marsh was estimated from aerial photographs and old maps. In 7230 plots, the elevation of the marsh surface, the thickness of the sediment layer (clay) and the presence of plant species was recorded. In addition, the nitrogen pool was measured at each successional stage. Accretion rates were similar in the three salt marshes. Higher accretion rates were found at younger marshes. A strong linear relationship between nitrogen pool size and thickness of the clay layer was found for the three marshes. The accumulation rate of nitrogen is therefore strongly related to the accretion rate. Thus, more nitrogen is present in the sediment of later successional stages where more clay has accumulated. On the high salt marsh (55 cm+MHT),Ameria maritima disappeared andArtemisia maritima, Juncus gerardi andElymus athericus established at sites with a thicker clay layer. On the low salt marsh (25 cm+MHT),Plantago maritima, Puccinellia maritima andLimonium vulgare disappeared andAtriplex (Halimione) portulacoides established. Apparently, with the accumulation of clay and therefore of nitrogen, tall growing species take over in salt marshes not grazed by livestock.  相似文献   

4.
We studied the impact of livestock grazing on the distribution ofBranta bernicla bernicla (Dark-bellied Brent goose) in the Dutch Wadden Sea during spring. It was hypothesized that livestock facilitate short-term (within-season) grazing for geese as well as long-term (over years). Therefore we measured grazing pressure by geese in salt marsh and polder areas that were either grazed (spring-grazed) or ungrazed during spring (summer-grazed). Additionally, we carried out a preference experiment with captive geese to test the preference between spring-grazed and summer-grazed polder swards. We furthermore compared patterns of use by geese between long-term ungrazed and grazed salt marshes. In May, there is a difference in grazing pressure by geese between polder pastures that are grazed or ungrazed during spring. In this month, the ungrazed polder pastures are abandoned and the geese shift to either the grazed polder pastures or to the salt marsh. Vegetation in the polder that had been spring-grazed had a lower canopy height and a higher tiller density than summer-grazed vegetation. The captive geese in the preference experiment showed a clear preference for vegetation that had been spring-grazed by sheep over ungrazed vegetation. Goose grazing pressure was negatively correlated to canopy height, both on the polder and on the salt marsh. Within the plant communities dominated byFestuca rubra andPuccinellia maritima, marshes that were intensively grazed by livestock generally had higher grazing pressure by geese than long-term ungrazed or lightly grazed salt marshes.  相似文献   

5.
Above and below-ground biomass and nitrogen and carbon composition ofSpartina maritima, Halimione portulacoides andArthrocnemum perenne, dominating species in plant communities of the lower, middle and higher salt marsh, respectively, were compared in an estuarine salt marsh in Portugal. Plant and soil nitrogen and carbon pools were estimated. For all three species root biomass was significantly higher (70–92% of total biomass) than above-ground biomass. The percentage of root biomass was related to the location of the plants in the marsh: higher values were found in plants growing in the lower salt marsh where the sediment was more unstable and subject to tidal action, which stresses the role of the roots as an anchor. For all three species nitrogen concentrations were highest in leaves, reflecting the photosynthetic role of the tissue. For carbon higher concentrations were found in the stems, with the exception ofS. maritima. In general, lower nitrogen concentrations were found in summer, which can be explained by dilution processes due to plant growth. For both nitrogen and carbon, higher concentrations were found in the soil surface layers. Higher soil nitrogen and carbon levels were associated with higher organic matter contents. Most of the nitrogen in the salt marsh occurred in the sediments (0–40 cm) and only ca. 5.7–13.3% of the total was found in the plants. The greater portion (76.5%–86%) of carbon was found in the sediment.  相似文献   

6.
Whitcraft CR  Levin LA 《Ecology》2007,88(4):904-917
Plant cover is a fundamental feature of many coastal marine and terrestrial systems and controls the structure of associated animal communities. Both natural and human-mediated changes in plant cover influence abiotic sediment properties and thus have cascading impacts on the biotic community. Using clipping (structural) and light (shading) manipulations in two salt marsh vegetation zones (one dominated by Spartina foliosa and one by Salicornia virginica), we tested whether these plant species exert influence on abiotic environmental factors and examined the mechanisms by which these changes regulate the biotic community. In an unshaded (plant and shade removal) treatment, marsh soils exhibited harsher physical properties, a microalgal community composition shift toward increased diatom dominance, and altered macrofaunal community composition with lower species richness, a larger proportion of insect larvae, and a smaller proportion of annelids, crustaceans, and oligochaetes compared to shaded (plant removal, shade mimic) and control treatment plots. Overall, the shaded treatment plots were similar to the controls. Plant cover removal also resulted in parallel shifts in microalgal and macrofaunal isotopic signatures of the most dynamic species. This suggests that animal responses are seen mainly among microalgae grazers and may be mediated by plant modification of microalgae. Results of these experiments demonstrate how light reduction by the vascular plant canopy can control salt marsh sediment communities in an arid climate. This research facilitates understanding of sequential consequences of changing salt marsh plant cover associated with climate or sea level change, habitat degradation, marsh restoration, or plant invasion.  相似文献   

7.
The animal-habitat relationships and seasonal dynamics of the benthic macroinfauna were investigated from November 1986 to October 1988 in the Great Sippe-wissett salt marsh (Massachusetts, USA). Total macrofaunal abundance varied seasonally, displaying a peak in late spring and early summer, then declining sharply during late summer and recovering briefly in fall before collapsing in winter. Three macroinfaunal assemblages were found in the marsh, distributed along gradients of environmental factors. These included a sandy non-organic sediment assemblage, a sandy organic sediment assemblage and a muddy sediment assemblage. The species groups characteristic of unstable sandy non-organic sediments included the polychaetes Leitoscoloplos fragilis, Aricidea jefreyssi, Magelona rosea and Streptosyllis verrilli, the oligochaete Paranais litoralis, and the crustacean Acanthohaustorius millsi. Sandy organic sediments were characterized by the polychaetes Marenzelleria viridis, Capitella capitata, Neanthes succinea, N. arenaceodonta, Polydora ligni and Heteromastus filiformis, the oligochaete Lumbricillus sp., and the mollusc Gemma gemma. In muddy sites, the polychaete Streblospio benedicti and the oligochaetes Paranais litoralis and Monopylephorus evertus were the dominant species. Secondary production of benthic macroinfauna in each of these habitats was estimated. The highest values of biomass and production were recorded in the sandy organic sediments. Secondary production was estimated to be 1850 kJ m-2 yr-1 in sandy organic areas, but only 281 kJ m-2 yr-1 in sandy non-organic areas and 113 kJ m-2 yr-1 in muddy areas. This results in an area-weighted average production of 505 kJ m-2 yr-1 for the unvegetated areas of the marsh. The Great Sippewissett salt marsh has an area of 483800 m2, the total secondary production of the macroinfauna for the whole unvegetated area of the marsh was estimated as 4651 kg dry wt yr-1, expressed as somatic growth. This production value seems consistent with production data obtained for other intertidal North Atlantic environments.  相似文献   

8.
Marsh hermit crabsPagurus longicarpus Say directly acquire new shells as the predatory gastropodMelongena corona Gmelin consumes marsh periwinkles,Littorina irrorata Say. The influx rate of new shells into a salt marsh hermit crab population was measured by marking live periwinkles and daily recovering the shells from hermit crabs over periods of 3 to 6 d. Average rates of new shell acquisition ranged from 4.0 to 23.3 new shells per day from salt marsh areas of 4×10 m. Such consistently high rates contrast with the negligible rates generally assumed for new shell entry into hermit crab populations. The number of new shells acquired each day varied directly with the number of the predatory gastropod,M. corona, present in each study area at both natural and manipulated predator densities. Empty shells on the substrate are usually considered as the primary source of new shells to hermit crabs. However, over 500 empty shells had to be placed on the substrate in a 4×10 m area to provide a daily rate of 20 new shells to the hermit crab population.This is the first in a new contribution series from the Florida State University Marine Laboratory No. 1001  相似文献   

9.
盐沼植物群落研究进展:分布、演替及影响因子   总被引:2,自引:0,他引:2  
盐沼是全球温带及亚热带地区的主要滨海湿地类型之一,在我国分布广泛。盐沼湿地生态系统敏感、脆弱且具有重要的生态系统服务功能。理解盐沼植物群落时空分布动态的一般规律与生态学机制,是开展盐沼生态系统研究的基础与关键。海陆交界的特殊环境特征是影响盐沼湿地植物群落的空间分布及演替过程的主要因素。在海洋潮汐作用下,盐沼湿地中的盐度、水淹强度、氧化还原电位等非生物因子往往呈梯度分布,这也导致了生物群落中种内、种间关系的变化。在非生物及生物因子的共同作用下,盐沼植物群落也往往沿高程梯度呈带状分布。环境变化是盐沼植物群落演替的驱动因素,在海岸线相对较为稳定的盐沼,植物群落的演替多属自发演替,而在靠近的大型河口的一些持续淤涨的盐沼,植物群落演替通常属于异发演替。沿海地区的水产业、流域上游及沿海地区的工程、污染及生物入侵等直接或间接的人类活动已对盐沼湿地植物群落的产生了深刻影响。经过数十年发展,国际上盐沼植物群落学研究的热点领域主要包括盐沼植物群落与其他生物群落的相互关系、植物群落在盐沼生态系统过程中的作用等。在全球变化背景下,盐沼植物群落对气候变化与海平面升高也日益成为盐沼植物群落学相关的热点。  相似文献   

10.
Relationships between flooding frequency, flooding duration, litter moisture levels, and litter decay rates were investigated across the natural hydrologic gradient common to intertidal salt marshes. The effects on litter decay of natural and experimental alterations of litter moisture content were assessed in both field litterbag experiments (conducted in a southern New Jersey salt marsh from 1989 to 1990) and laboratory incubations (1990). Overall, tidally mediated litter moisture content was the dominant factor controlling litter decay throughout the vegetated marsh. Rates of carbon loss were most closely related to litter moisture levels (r=0.84), which were directly related to flooding frequency (r=0.66) and duration (r=0.63). Litter moisture levels were related to elevation within the tidal range due to increasing surface levation from creekbank to high marsh (ca. 54 cm) and height of litter above the sediment surface. Carbon losses from litter of short and tall form Spartina alterniflora Loisel. and S. patens (Aiton) Muhl. along the marsh elevation gradient indicate that while some of the variations in decay rates may be due to litter type, litter moisture accounted for most of the observed variation between marsh zones and within each litter type. Mousture levels are also affected by the water retention capacity of each litter type, which may also secondarily influence decay rates. Short-term incubations of litter indicated that CO2 evolution was positively related to moisture content with negligible respiration at moisture levels below 15% (fresh mass), increasing to a maximum between 65 and 75% depending upon litter type. Since most Spartina spp. litter remains above the marsh surface where it maintains a lower moisture content than surface litter, the use of surface litterbags may overestimate rates of carbon loss in some systems. In addition, since changes in elevation of only a few centimeters had significant effects on both litter moisture levels and decay rates, slight changes in tidal regime may have important consequences for organic matter cycling in salt marshes by affecting litter decomposition processes.  相似文献   

11.
In September 2003, Hurricane Isabel created an inlet over 500 m wide and 10 m deep that connected the Atlantic Ocean and Pamlico Sound. This breach was subsequently filled with sediments dredged from the adjacent sound. The purpose of this study was to determine if the barrier island terrestrial plant communities were naturally re-establishing through primary succession. In 2006–2008, we compared plant communities, soil carbon and nitrogen, and Aeolian transport of sediments in undisturbed back-dunes, undisturbed shrub thickets, putative back-dunes, and putative shrub thickets. We found that species richness and evenness were low on the filled area relative to adjacent plant communities that had persisted through the storm. Plants on the filled area were almost entirely limited to a band of primarily Spartina patens found at the margin of the sound and there were no signs of establishing the typical zonation of back dune grasses, shrubs, and salt marsh. Evaluation of soil quality suggests that nutrients and organic material are not limiting recovery. Aeolian transport, however, was demonstrably higher across the filled area, where no dense stands of taller plants buffered the airflow. Plant re-establishment is suppressed by wind erosion inhibiting deposition of seeds. Recovery of the site will likely depend on the rhizomatous spread of S. patens from the sound shore. S. patens can then potentially facilitate the colonization of other species by buffering the wind and trapping seeds of other plants. Ironically, this slow recovery may benefit federally threatened bird species that require sparse vegetation for nesting success.  相似文献   

12.
Plants growing in waterlogged environments are subjected to low oxygen levels around submerged tissues. While internal oxygen transport has been postulated as an important factor governing flooding tolerance, respiration rates and abilities to take up oxygen under hypoxic conditions have been largely ignored in plant studies. In this study, physiological characteristics related to internal oxygen transport, respiration, and oxygen affinity were studied in low intertidal marsh species (Spartina alterniflora and S. anglica) and middle to high intertidal species (S. densiflora, S. patens, S. foliosa, a S. alterniflora × S. foliosa hybrid, S. spartinae, and Distichlis spicata). These marsh plants were compared to the inland species S. pectinata and the crop species rice (Oryza sativa), corn (Zea mays), and oat (Avena sativa). Plants were grown in a greenhouse under simulated estuarine conditions. The low marsh species S. anglica was found to transport oxygen internally at rates up to 2.2 μmol O2 g fresh root weight−1 h−1. In contrast, marsh species from higher zones and crop species were found to transport significantly less oxygen internally, although rice plants were able to transport 1.4 μmol g−1 h−1. Under hypoxic conditions, low marsh species were better able to remove dissolved oxygen from the medium compared to higher marsh species and crops. The oxygen concentration at which respiration rates declined due to limited oxygen (P crit) was significantly lower in low marsh species compared to inland and crop species; P crit ranged from <4 μM O2 in the low marsh species S. anglica up to 20 μM in the inland species corn. Flooding-sensitive crop species had significantly higher aerobic respiration rates compared to flooding-tolerant species in this study. Crop species took up 3.6–6.7 μmol O2 g−1 h−1 while all but one marsh species took up <3.5 μmol O2 g−1 h−1. We conclude that oxygen transport, aerobic demand, and oxygen affinity all play important and interrelated roles in flood tolerance and salt marsh zonation.  相似文献   

13.
The structure and trophic organization of two intertidal seagrass-bed communities (Halodule uninervis and Thalassia hemprichii) were examined on the southwest coast of New Caledonia (SW Pacific Ocean), from April 1989 to March 1990. Five benthic samples were collected from each site at 2 mo intervals and various environmental parameters were simultaneously monitored. Animal:plant biomass ratios were close to 1 at both sites. Polychaetes dominated in number of species. The suspension-feeding bivalves Gafrarium tumidum and Anadara scapha constituted the greater part of the animal biomass. The evolution of the communities over an annual cycle displayed marked structural and organizational stability, resulting mainly from the absence of distinct recruitment periods for the dominant species, no mortalities during the brief low-salinity periods, and no temporal variations in the granulometry, the organic matter or the chlorophyll a contents of the sediments.  相似文献   

14.
Grewell BJ 《Ecology》2008,89(6):1481-1488
Outbreaks of infectious agents in natural ecosystems are on the rise. Understanding host-pathogen interactions and their impact on community composition may be central to the conservation of biological diversity. Infectious agents can convey both exploitive and facilitative effects that regulate host populations and community structure. Parasitic angiosperms are highly conspicuous in many plant communities, and they provide a tractable model for understanding parasite effects in multispecies communities. I examined host identity and variation in host infectivity of a holoparasitic vine (Cuscuta salina) within a California salt marsh. In a two-year parasite removal experiment, I measured the effect of C. salina on its most frequent host, a rare hemiparasite, and the plant community. C. salina clearly suppressed the dominant host, but rare plant fitness and plant species diversity were enhanced through indirect effects. Priority effects played a role in the strength of the outcome due to the timing of life history characteristics. The differential influence of parasites on the fecundity of multiple hosts can change population dynamics, benefit rare species, and alter community structure. The continuum of negative to positive consequences of parasitic interactions deserves more attention if we are to understand community dynamics and successfully restore tidal wetlands.  相似文献   

15.
While the benthic infauna of the North Sea has been studied intensively over the past decades, few studies have focused on the larger mobile epifauna. Studies carried out to date have described the distribution of epifaunal communities over the whole of the North Sea, but variability within the identified communities, which occurs on a much smaller scale, has so far remained unstudied. This is the first study to describe seasonal and annual variability of an epifaunal assemblage in the German Bight area, where environmental conditions are highly variable. The benthic community was sampled with a 2 m beam trawl from 1998 to 2001. The echinoderms Ophiura albida and Asterias rubens and the crustacean Pagurus bernhardus were the dominant species caught throughout the study period. Overall the species composition of the catches was relatively consistent, while abundances of dominant species fluctuated considerably between sampling periods. Differences between sampling periods were not only influenced by the abundances of dominant species, but also by less dominant species such as Ophiura ophiura, Astropecten irregularis, Corystes cassivelaunus, Crangon crangon and Aphorrahis pespelicani. The abundances of these species varied annually and seasonally in the assemblage. Clear differences between summer and winter in the species composition, abundance and biomass were identified. Annual and seasonal changes were most likely linked to migratory movements of epifauna into and out of the area under investigation. Temporal changes in species composition and abundance correlated best with water temperatures, while the spatial distribution of the total biomass over the whole sampling period was correlated with sediment characteristics. Anthropogenic influences such as fishing activity and chronic large-scale eutrophication are thought to have influenced the community on a long-term basis, but have been considered unlikely causes for the short-term variability described by this study.Communicated by J.P. Thorpe, Port Erin  相似文献   

16.
In recent years the pace of exotic species introduction and invasion has accelerated, particularly in estuaries and wetlands. Species invasions may affect coastal ecosystems in many ways. Alteration of sedimentary environments, through structure formation and burrowing, has particularly dramatic effects on coastal habitats. This study examines modification of channel bank and marsh edge habitat by the burrowing Australasian isopod Sphaeroma quoyanum Milne Edwards, in created and natural salt marshes of San Diego Bay and San Francisco Bay. Abundance and distribution patterns of this isopod species, its relationships with habitat characteristics, and its effects on sediment properties and bank erosion were examined seasonally, and in several marsh microhabitats. Mean isopod densities were 1541 and 2936 individuals per 0.25 m2 in San Francisco Bay, and 361 and 1153 individuals per 0.25 m2 in San Diego Bay study sites during December and July 1998, respectively. This isopod forms dense, anastomosing burrow networks. S. quoyanum densities did not differ as a function of location within creeks or location in natural versus created marshes. Burrows, which are on average 6 mm wide and 2 cm long, were associated with firm sediments containing high detrital biomass. Although erosion is a natural process along salt marsh banks, enclosure experiments demonstrated that isopod activities can enhance sediment loss from banks. In areas infested with S. quoyanum, losses may exceed 100 cm of marsh edge per year. The effects of habitat alteration by this invading species are likely to increase in severity in the coastal zone as these ecosystems become degraded. Received: 30 March 2000 / Accepted: 21 September 2000  相似文献   

17.
Grazing by livestock is used as a management tool to prevent the dominance of a single tall-growing specises during succession on European salt marshes. The effects of natural small herbivores are often neglected by managers. Long-term exclosure experiments on the island of Schiermonnikoog show that hares retard vegetation succession at the early stages of salt-marsh development. In the present study we test whether we can scale-up these exclosure studies to a whole salt-marsh system. We compared 30 years of undisturbed vegetation succession at the Wadden Sea islands of Schiermonnikoog, Rottumerplaat (both The Netherlands) and Mellum (Germany). Salt-marsh development started at all sites in the early 1970s. Hares have been present only on Schiermonnikoog. At each site an area was selected covering a gradient from high to low salt marsh. Surface elevation and clay thickness were measured and a vegetation map was made on the three islands. The areas showed similar clay thickness at low surface elevation, indicating similar sedimentation ratesand hence nitrogen inputs. Rottumerplaat and Mellum showed a higher dominance of the late successional speciesAtriplex portulacoides in the low marsh andElymus athericus in the high marsh compared to Schiermonnikoog. Typical mid-successional, important food plant species for hares and geese had a higher abundance at Schiermonnikoog. Patterns of vegetation development in the absence of hares followed the observed patterns in the smallscale exclosure experiments at Schiermonnikoog. Without hare grazing, vegetation succession proceeds more rapidly and leads to the dominance of tall-growing species in earlier stages of succession. The present study shows that next to large herbivores, small herbivores potentially have largescale effects on salt-marsh vegetation succession during the early successional stages.  相似文献   

18.
We sampled the communities of decapod crustaceans inhabiting the depth zone between 3 and 871 m off the Catalan coast (North-West Mediterranean) from June 1981 to June 1983. The 185 samples comprised 90 species differing widely in their depth distributions. Multivariate analysis revealed four distinct faunistic assemblages, (1) littoral communities over sandy bottoms, (2) shelf communities over terrigenous muds, (3) upper-slope communitics, and (4) lower-slope or bathyal communities. The brachyuran crab Liocarcinus depurator is the most abundant species of the shelf assemblage, although L. vernalis dominates over the shallow sandy bottoms of the shelf. The dominant species of the upper-slope assemblage are nektobenthic species (Solenocera membranacea, Plesionika heterocarpus, Processa canaliculata), pelagic species (Pasiphaea sivado, Sergestes arcticus), and benthic species (Macropipus tuberculatus, Munida intermedia, Nephrops norvegicus). Aristeus antennatus comprise most of the biomass of the lower-slope community, which supports a greater diversity than the other assemblages. The main assemblages appear to be related to different hydrological characteristics, the extent of seasonal fluctuations, and to the changes in sediment structure associated with changes in the steepness of the bottom.  相似文献   

19.
Local adaptation is an important mechanism generating physiological diversity and can be especially pronounced in species with restricted dispersal and gene flow such as direct developing snails of the genus Littorina. We compared physiological responses to salinity and desiccation stress in two co-occurring species of northeastern Pacific Littorina (L. subrotundata and L. sitkana) with salt marsh and open shore ecotypes. The animals from salt marsh populations were significantly more tolerant to low salinities and significantly less resistant to desiccation stress than their open shore counterparts. The lower resistance to desiccation in salt marsh animals was not associated with a higher rate of water loss during air exposure or with lower body water reserves, but instead reflected a lower tolerance to high salinities. These habitat-related physiological differences occurred in parallel in the two studied species of Littorina and persisted after prolonged laboratory acclimation, suggesting that they may reflect selection for markedly different local optima in the salt marsh habitats than in the open shore habitats. We used a neutral polymorphic nuclear DNA marker (intron of aminopeptidase N) to estimate the level of gene flow between the populations from different habitats and found isolation by distance regardless of the habitat from which the snails were collected. Our molecular data suggest that physiological cohesiveness of ecotypes can arise despite different genetic backgrounds, and could potentially be due to parallel evolution of convergent phenotypes in similar habitats.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

20.
Acetylene reduction (nitrogen fixation) was measured in several vegetational areas in a Delaware, USA salt marsh. Samples were collected for 1 yr and the results showed a seasonally variable pattern of acetylene reduction at all stations. Peak rates were generally recorded during the later summer and early fall (September–October). The seasonality was influenced mainly, although not exclusively, by the soil temperature. In addition, samples collected in short Spartina alterniflora stands exhibited rates which were up to 20-fold higher than those found in samples from tall S. alterniflora stands. Over 50% of the total yearly ethylene production occurred from mid-August until the beginning of December at the tall and short S. alterniflora stations. Maximum activity occurred at 5 cm depth for all stations. Surface activity accounted for only 3–4% of the total measured in the top 20 cm. Addition of glucose or mannitol resulted in considerable increases in activity, thus suggesting that heterotrophic acetylene reduction is carbon and/or energy limited. The results obtained in this study indicate that the measured rates are only potential rates and that considerable caution must be used in extrapolating from acetylene reduction rates to nitrogen fixation rates in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号