首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The effects of artificially added flavonoid aglycones to birch leaf surfaces on the larval performance of six species of leaf-chewing sawflies were investigated. Significantly negative effects of increased contents of both total flavonoid and individually fed flavonoid compounds were found for the larval performance of certain mid to late and late, but not early season, sawfly species. Species-specific variations in the quantity of faecal flavonoid glycosides, which were examined to investigate whether effective glycosylation of foliar flavonoid aglycones in larvae correlated with varying tolerance to these compounds, also yielded significant species-specific differences between early and late season species. The results suggest seasonal adaptations in host plant use by sawflies feeding on mountain birch, such that phenologically earlier species are better adapted to coping with leaf surface flavonoid aglycones, which occur in the highest concentrations in young leaves.  相似文献   

2.
Non-random distribution patterns of specialized phytophagous insects on their hosts may depend on intraspecific differences in plant tissue quality, including nutrients and secondary compounds. Secondary compounds are involved in plant resistance, but are also important for the recognition and acceptability of plants as resources by specialized insects. If individuals within a plant species vary in their content of such secondary substances, there may also be qualitative differences between them. In such cases, natural selection will favor insects with the ability to distinguish and prefer the more suitable plants. In Sweden, the leaf beetle Gonioctena linnaeana Schrank (Coleoptera, Chrysomelidae) is highly specialized on one host, the native willow Salix triandra L (Salicaceae). Field observations reveal that some host plants in a population harbor many feeding larvae, causing severe defoliation, whereas neighboring plants may have few or no feeding larvae. Our hypothesis is that the distribution pattern of G. linnaeana larvae in this population results from qualitative differences between individual host plants in combination with the ability of G. linnaeana females to distinguish between plants that are suitable and not suitable for offspring performance. We examine whether larval survival differs depending on diet and whether the content of secondary chemical compounds explains female preference. Based on the higher survival rate of larvae reared on leaves from preferred hosts, we conclude that G. linnaeana females have evolved a behavior that maximizes offspring performance and thus positively affects female fitness. A chemical survey of the plants indicates that luteolin-7-glucoside and an unidentified flavonoid are important for separating the preferred from the non-preferred plants.  相似文献   

3.
Summary. Sequestration of plant toxins in herbivores is often correlated with aposematic coloration and gregarious behaviour. Larvae of Pieris brassicae show these conspicuous morphological and behavioural characteristics and were thus suggested to sequester glucosinolates that are characteristic secondary metabolites of their host plants. P. rapaeare camouflaged and solitary, and are thus not expected to sequester. To test this hypothesis and to check the repeatabi-lity of a study that did report the presence of the glucosinolate sinigrin in P. brassicae, larvae were reared on three species of Brassicaceae (Sinapis alba, Brassica nigra and Barbarea stricta), and different leaf and insect samples were taken for glucosinolate analysis. The major host plant glucosinolates could only be found in traces or not at all in larval haemolymph, bled or starved larvae, faeces or pupae of both species or P. brassicae regurgitant. Haemolymph of both Pieris spp. was not rejected by the ant Myrmica rubra in dual-choice assays; the regurgitant of P. brassicae was rejected. This suggests the presence of compounds other than glucosinolates that might be sequestered in or produced by P. brassicae only. In faeces of both Pieris spp. a compound which yielded 4-hydroxybenzylcyanide (HBC) upon incubation with sulfatase was detected in high concentrations when larvae had been reared on S. alba. This compound may be derived from hydrolysis of sinalbin, the main glucosinolate of that plant. The unidentified HBC progenitor was apparently not sequestered in the two Pieris spp., and was not detected in faeces of larvae reared on B. nigra or B. stricta. Received 18 July 2002; accepted 11 September 2002.  相似文献   

4.
Summary.  The sampling behavior of the Colorado potato beetle Leptinotarsa decemlineata Say (CPB) involves examination of the surface of potato leaves. It has been suggested that leaf surface compounds (volatiles and cuticular waxes) may be involved in host-plant recognition, acceptance or discrimination. Here we report on the effect of leaf surface extracts of six Polish commercial potato varieties on CPB feeding. We tested the influence of potato leaf surface extracts on CPB adult and larval feeding, then separated the extracts with HPLC, and finally tested the effect of the HPLC-separated fractions on CPB feeding. The bioassays were performed using potato leaf discs deprived of their original surface compounds. Applied to test discs at concentrations ten times higher than natural (10 leaf area equivalent), the extracts deterred CPB adults and larvae from feeding. HPLC-separated fractions composed of alkanes, sesquiterpene hydrocarbons, wax esters, benzoic acid esters, fatty acid methyl, ethyl, isopropyl and phenylethyl esters, aldehydes, ketones, methyl ketones, fatty acids, primary alcohols, β-amyrin and sterols did not affect adult CPB feeding. Similarly, alkanes, sesquiterpene hydrocarbons, wax esters, methyl ketones, sesquiterpene alcohols and secondary alcohols had no effect on larval CPB feeding. The sterol fraction (cholesterol, β-sitosterol and stigmasterol) acted as a phagostimulant to CPB larvae. We isolated a fraction demonstrating a phagodeterrent effect on CPB adults and larvae. The qualitative composition of the deterrent fraction was quite similar in all potato extracts, but there were quantitative differences between the varieties. Much further work is needed to identify the compounds that can produce the deterrent effect.  相似文献   

5.
The effects of larval diet on the nutritional preferences of butterflies has rarely been examined. This study investigates whether alterations in the larval diet result in changes in adult preferences for nectar amino acids. Larvae of Coenonympha pamphilus were raised on fertilized or unfertilized Festuca rubra, grown under ambient (350 ppm) or elevated (750 ppm) atmospheric CO 2environments. Fertilization led to marked increases in leaf nitrogen concentration. In plants grown under elevated CO 2conditions, leaf water and nitrogen concentrations were significantly lower, and the C/N-ratio increased significantly. Fertilization of the host plant shortened the development time of C. pamphilus larvae, and pupal weight increased. In contrast, larvae of C. pamphilus developed significantly slower on F. rubra grown under elevated CO 2, but adult emergence weight was not affected by CO 2treatment of the plant. C. pamphilus females showed a clear preference for nectar mimics containing amino acids, whereas males, regardless of treatment, either preferred the nectar mimic void of amino acids or showed no preference for the different solutions. Female butterflies raised on fertilized plants showed a significant decline in their preference for nectar mimics containing amino acids. A slight, but not significant, trend towards increased nectar amino acid preference was found in females raised on plants grown under elevated CO 2. We clearly demonstrate that alterations in larval host quality led to changes in butterfly nectar preferences. The ability of the butterfly to either rely less on nectar uptake or compensate for poor larval conditions represents a trade-off between larval and adult butterfly feeding.  相似文献   

6.
Summary. The larvae of the hawkmoth species Hyles euphorbiae have a conspicuous aposematic colouration and show gregarious behaviour. It has thus been suggested that they sequester phorbol esters from their food plants which include different species of the genus Euphorbia (Euphorbiaceae) for chemical protection against predators. To test this hypothesis in more detail, we fed larvae an artificial diet with three doses of 12-tetradecanoyl-phorbol-13-acetate (TPA), then examined the faeces and the larval tissues, such as integument, haemolymph and gut of the caterpillars for the presence of TPA. In order to determine the ability of the larvae to detoxify phorbol esters, other larvae were directly injected with a TPA solution and analysed in the same manner. Our study indicates that the larvae of Hyles euphorbiae do not sequester phorbol esters. Upon oral application TPA was not found in the larval integument or the haemolymph. Instead, it was mostly metabolised (about 70–90%). Nevertheless, about 10-30% were retained and recovered in the faeces. The larvae were also able to metabolise and thus detoxify the phorbol ester when TPA was injected directly into the body. These hawkmoth caterpillars are relatively large and have a gut full of plant material, which they regurgitate into the direction of the predator when attacked in nature. Since phorbol esters are very potent toxins and irritants, we postulate that the gut content (and especially the plant slurry disgorged as regurgitant from the anterior gut) alone could be aversive for a potential predator, even if some metabolism has taken place. Thus, although H. euphorbiae caterpillars do not actively sequester phorbol esters, their aposematic colouration appears to be based on chemical defence through phorbol esters retained in the gut.  相似文献   

7.
Heraclides brasiliensis (Lepidoptera: Papilionidae) larvae feed preferably on Piperaceae, foraging successfully on leaf tissues even though species of this contain high levels of secondary metabolites such as amides and lignans, associated with diverse biological activities including insecticidal properties. Studies examining the metabolism of chemical constituents in Piperaceae by insects are rare. In this study, we characterized the metabolites of 4-nerolidylcatechol (4-NC), the major constituent of Piper umbellata (Piperaceae), and E-2,3-dihydro-3-(3,4-dihydroxyphenyl)farnesoic acid, compounds from fecal material of H. brasiliensis larvae fed a diet containing only P. umbellata leaves. The biotransformed product was also detected in larval and pupal tissues. Moreover, we observed deactivation of the toxicity of P. umbellata leaves against brine shrimp after their metabolism in H. brasiliensis larvae from a LC50 of 523.3 to 3,460.7 μg/mL. This deactivation is closely associated with the biotransformation of 4-NC to E-2,3-dihydro-3-(3,4-dihydroxyphenyl)farnesoic acid, which showed LC50 of 8.0 and >1,000 μg/mL, respectively.  相似文献   

8.
Summary. We investigated the effects of four chemically characterised galloylglucoses (GGs, a subgroup of hydrolysable tannins) and their hydrolysis product, gallic acid (GA), on consumption and performance of larvae of the autumnal moth Epirrita autumnata. Larvae were fed with birch (Betula pubescens) leaves that had been painted individually with each of the compounds at two levels, 5 and 20 mg/g. In addition, we investigated the fates of the leaf-painted GGs and GA in the E. autumnata digestive tract by comparing phenolics in leaves consumed and in faeces. In general, GGs reduced leaf consumption by E. autumnata during the second and fourth instars, although there was high compound- and instar-specific variation. However, GGs did not affect the leaf consumption rates by the most voracious fifth instar larvae. This resulted in approximately the same loss of total biomass by the experimental tree, regardless of the nature and level of GGs enriched to its foliage. The characteristic fate of hydrolysable tannins, i.e. hydrolysis, was evidenced in the larval digestive tract for three of the four leaf-painted GGs. In addition to hydrolysis, the almost total absence of GGs in larval faeces was presumably related to the oxidation of GGs. The dose-dependent excretion percentage of ingested GA showed that it's faecal content should not be used, although it commonly is, to calculate the level of GG hydrolysis. Moreover, by comparing the non-uniform appearance of faecal tetragalloylglucoses, whether ingested as such or hydrolysed from pentagalloylglucose, we concluded that a major part of oxidation of GGs occurs before their hydrolysis in the digestive tract of E. autumnata. Criticism against the common use of tannic acid, a heterogeneous mixture of GA and GGs, in ecological studies is presented. Received 15 May 2002; accepted 16 July 2002  相似文献   

9.
Summary. Larvae of Chrysomela leaf beetles release for defence volatile compounds belonging to various chemical families. This study focuses on the defensive strategy based on the esterification of isobutyric acid and 2-methylbutyric acid with a wide variety of alcohols taken up from the host plant. To date, only two species are known to produce these repellents C. interrupta, which is associated with Betulaceae and C. lapponica which occurs either on Betulaceae or Salicaceae.? In order to know if other species have developed this chemical defence and how the food plant influences the secretion of these toxins, we targeted by mass spectrometry the presence of iso- and 2-methylbutyric acids and esters of them in the defensive secretions of Chrysomela larvae exclusively associated with Betulaceae or Salicaceae. ?Screening analyses reveal that the synthesis of these compounds is a common character restricted to all the members belonging to the C. interrupta group sensu Brown (1956) regardless of the host-plant family. These results suggest that the biochemical mechanism leading to the synthesis of these compounds could be considered as a synapomorphy meaning that the group is probably monophyletic. ?Defensive secretions of the members of the interrupta group are quantitatively assayed for iso- and 2-methylbutyric acids and their (Z)-3-hexenyl esters. Results reveal a chemical plasticity developed by Chrysomela species associated with Salicaceae. The amounts of iso- and 2-methylbutyric acids derivatives and of salicylaldehyde in their larval secretions depend on the food plant and on its content in phenolglucosides. Received 5 October 1998; accepted 25 November 1998.  相似文献   

10.
The variations of protease and amylase activities during the larval development of the crustaceanPalaemon serratus maintained at 20°C have been investigated. Some important differences have been detected during the first larval stages. Amylase activity rapidly reaches a high level during the second larval stage (Zoea II), whereas the increase in protease activity only occurs at the fifth larval stage (IV or Mysis I). Disc electrophoresis of soluble proteins reveals important qualitative and quantitative changes. Qualitative changes occur mainly at the second larval stage and during metamorphosis. All these changes are related to modifications of the shrimp's diet.  相似文献   

11.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

12.
Summary. Easy bleeding is a phenomenon discovered in some tenthredinid insects which possess a particularly low mechanical resistance of the integument, leading under mechanical stress to haemolymph exudation. It has a defensive effect against ants and wasps through harmful plant compounds which are sequestered in the haemolymph. Here we describe etho-ecological and some chemical aspects of the defence of easy bleeders and specify the range of predators to which easy bleeding might be effective. Beside a high haemolymph deterrence associated with low integument resistance across sawfly species, we also detected toxicity of the haemolymph of some species to workers of the ant Myrmica rubra. The behaviour of easy bleeders is to move slowly and, once disturbed, to become motionless, thereby probably impeding the tendency of a predator to attack. This behaviour had no beneficial effect for easy bleeders when attacked by the predatory bug Podisus maculiventris. Bugs could successfully and without harm prey on sawfly larvae without evoking easy bleeding. For the easy bleeder Athalia rosae, host plants with different secondary metabolite profiles, and, consequently, changes in haemolymph chemistry only slightly affected the feeding behaviour of the bugs. To test the effectiveness of easy bleeding towards a vertebrate predator, easy bleeders were offered to birds, Sturnus vulgaris. The body colouration of the sawfly larvae was of prime importance in determining the predators response when testing birds in a group. It is likely that easy bleeding is a defence strategy directed primarily towards foraging insects with biting-chewing mandibles and that it is much less active towards predatory insects with piercing-sucking mandibles as well as birds. The involvement of chemical and/or physical cues in the strategy is discussed with respect to these types of predators.  相似文献   

13.
The present paper studied the influence of different food regimes on the free amino acid (FAA) pool, the rate of protein turnover, the flux of amino acids, and their relation to growth of larval turbot (Scophthalmus maximus L.) from first feeding until metamorphosis. The amino acid profile of protein was stable during the larval period although some small, but significant, differences were found. Turbot larvae had proteins which were rich in leucine and aspartate, and poor in glutamate, suggesting a high leucine requirement. The profile of the FAA pool was highly variable and quite different from the amino acid profile in protein. The proportion of essential FAA decreased with development. High contents of free tyrosine and phenylalanine were found on Day 3, while free taurine was present at high levels throughout the experimental period. Larval growth rates were positively correlated with taurine levels, suggesting a dietary dependency for taurine and/or sulphur amino acids. Reduced growth rates in Artemia-fed larvae were associated with lower levels of free methionine, indicating that this diet is deficient in methionine for turbot larvae. Leucine might also be limiting turbot growth as the different diet organisms had lower levels of this amino acid in the free pool than was found in the larval protein. A previously presented model was used to describe the flux of amino acids in growing turbot larvae. The FAA pool was found to be small and variable. It was estimated that the daily dietary amino acid intake might be up to ten times the larval FAA pool. In addition, protein synthesis and protein degradation might daily remove and return, respectively, the equivalent of up to 20 and 10 times the size of the FAA pool. In an early phase (Day 11) high growth rates were associated with a relatively low protein turnover, while at a later stage (Day 17), a much higher turnover was observed. Received: 19 March 1997 / Accepted: 14 April 1997  相似文献   

14.
Larval growth rate and settlement of the European flat oyster Ostrea edulis were experimentally studied as a function of the composition of dietary fatty acids. Diets differing in fatty acid composition were composed by mixtures of the microalgae Isochrysis galbana, Pavlova lutheri and Chaetoceros calcitrans. Fatty acid content in the tissue of the feeding larvae, analyzed by gas chromatography and mass spectrometry, reflected the composition in the diet. Larval growth rate was significantly correlated to the three omega-3 polyunsaturated fatty acids (PUFA) C18:3, C18:4 and C22:6, with minor differences for neutral and polar lipids. No relation between growth rate and the omega-3 PUFA C20:5 was detected, a PUFA often implied as essential for bivalves. It is suggested that naturally occurring variability in fatty acid composition may constrain larval growth. In settlement experiments in both still water and flume flow little substrate selectivity was found for some contrasting substrates. It is concluded that differences in dietary fatty acids may explain as much of settlement success as the variability of substrates. Received: 12 October 1998 / Accepted: 6 April 1999  相似文献   

15.
Synergistic combinations of plant allelochemicals are commonly believed to increase their effectiveness as defenses against insect herbivores. For example, temperate deciduous trees produce large amounts of phenolic compounds (primarily tannins), but many of these trees also produce smaller amounts of other potentially toxic compounds. This study tested the hypothesis that mixtures of phenolics and other types of toxins produce a greater effect on oxidative stress (a measure of toxicity) than do phenolics alone. Oxidative stress was measured in Lymantria dispar (gypsy moth) larvae as a shift in the redox balance of glutathione (GSH) towards a higher percentage of its oxidized form (glutathione disulfide; GSSG). We began by showing that larvae that ingested ellagitannins and chlorogenic acid (phenolics) contained greatly elevated levels of reactive oxygen species in their midgut contents, but this was not sufficient to shift the redox balance of GSH in their midgut tissues. Therefore, the phenolic compounds were tested in pairwise combinations with juglone (a quinone), rutin, kaempferol, or quercitrin (flavonoids), quinine, berberine, gramine, or glaucine (alkaloids), and soy or Quillaja saponins. When each of these allelochemical combinations was treated on hybrid poplar (Populus tremula × P. alba) leaves and consumed by L. dispar larvae for a 2-day period, none significantly shifted the redox balance of GSH. GSH levels were induced by the combination of phenolics with an alkaloid and a saponin, suggesting that a “cocktail” of allelochemicals might produce a more effective plant defense. GSH levels were also found to increase with larval age, both within and between instars. Increased levels of GSH may help explain the greater resistance of late-instar than early-instar larvae to plant defenses. Overall, the results of this study do not support the hypothesis that the combined effects of phenolic compounds and other toxins in sugar maple (Acer saccharum) leaves produce a synergistic increase in oxidative stress in L. dispar larvae. Further work is needed to test the general hypothesis that the allelochemical diversity in plants functions, in part, to produce synergistic toxicological effects in insect herbivores.  相似文献   

16.
The great barracuda (Sphyraena barracuda) is a widespread, ecologically and socioeconomically important coastal fish, yet very little is known about its larvae. We examined spawning and larval ecology of Western Atlantic sphyraenids using monthly ichthyoplankton samples collected over 2 years along a transect spanning the east–west axis of the Straits of Florida (SOF). Samples were dominated by the great barracuda (92.8%) and sennets (Sphyraena borealis and Sphyraena picudilla; 6.6%). While larval sennets and S. barracuda displayed similar vertical distributions (majority in upper 25 m), horizontal and temporal patterns of abundance suggested a spatial and temporal species replacement between larval S. barracuda and sennets that tracks adult ecology. The diet of both taxa consisted largely of copepods, with inclusion of fish larvae at 8 mm SL, and in S. barracuda alone, a switch in the wet season to exclusive piscivory by 12 mm SL (18 days post-hatch). A lack of piscivory in S. barracuda larvae captured in the dry season corresponded to slower larval growth than in the wet season. Larval growth was also related to size-at-hatch and larval age such that larvae that were larger at hatch or larger (older) at capture grew faster at earlier ages, suggesting faster larval growth, and indirectly larger hatch size, conveys a survival advantage. Unlike larval growth, instantaneous mortality rate did not differ with season, and no lunar cyclic patterns in spawning output were identified. Our results provide insight into the pelagic phase of sphyraenids and highlight the importance of both diet and hatch size to the growth and survival of fish larvae in low latitude oceanic environments.  相似文献   

17.
The pelagic yellowtail kingfish Seriola lalandi has become a target species for aquaculture in Asia and Australasia. Australasian production is reliant on larviculture from eggs of captive brood stock; however, knowledge regarding the nutritional requirements of larvae of this species is still scarce, particularly in relation to lipids. As a first step in establishing these requirements, eggs and larvae from captive S. lalandi brood stock were examined for differences in total protein, total lipid and lipid classes between individual spawning events, over the spawning season, and during larval development from fertilisation to 15 days post hatch. Results indicate that total protein egg−1 varied significantly between individual spawning events within a season, but neither total lipid nor total protein egg−1 varied significantly across the spawning season. Brood stock egg lipids were made up of approximately 60% phospholipid, 25% wax and/or sterol esters (WE), 15% triacylglycerol (TAG), and small amounts of sterols and free fatty acids. During the early larval period, both WE and TAG were utilised concurrently for energy. The larvae experienced very high mortality around 5–7 days post hatch, which coincided with very low levels of all neutral lipid classes. Although many other factors may also influence larval mortality, these results indicate that lipid provisioning may be an important factor in larval survival during the critical period around first-feeding in this species. Examination of ratios of TAG:ST, often used as a condition index in fish larvae, suggested that some of the larvae were suffering from starvation. However, as egg-derived WE appears to provide a significant source of energy during the early larval period in S. lalandi, it is suggested that WE should be included in any index of larval nutritional state.  相似文献   

18.
Settlement patterns and the relationship between meroplanktonic larvae and settlement in decapods were studied on the Scottish east coast. Artificial settlement substrates (ASS), deployed at two locations (sandy vs. rocky sea substrates), were employed to collect megalopae and newly settled juveniles. Abundance of meroplanktonic larvae was used as an indicator of larval supply. The results showed a clear seasonality in settlement rates, and in some cases, significant differences between sites were detected. Nevertheless, the interference of the ASS with the surrounding habitat limits the study of spatial variability in settlement rates. Significant cross-correlation was found between the abundance of megalopae and juveniles in the collectors and planktonic larval abundance a month earlier. For individual species, this relationship was observed only in Pisidia longicornis. Complexities caused by the great variety of pre- and post-settlement processes, alongside effects of secondary dispersals of early juveniles may have obscured the relationship between meroplanktonic larvae and juveniles in other species.  相似文献   

19.
Summary During foraging, natural enemies of herbivores may employ volatile allelochemicals that originate from an interaction of the herbivore and its host plant. The composition of allelochemical blends emitted by herbivore-infested plants is known to be affected by both the herbivore and the plant. Our chemical data add new evidence to the recent notion that the plants are more important than the herbivore in affecting the composition of the volatile blends. Blends emitted by apple leaves infested with spider mites of 2 different species,T. urticae andP. ulmi, differed less in composition (principally quantitative differences for some compounds) than blends emitted by leaves of two apple cultivars infested by the same spider-mite species,T. urticae (many quantitative and a few qualitative differences). Comparison between three plant species — apple, cucumber and Lima bean — reveals even larger differences between volatile blends emitted upon spider-mite damage (many quantitative differences and several qualitative differences).  相似文献   

20.
Four species of microalgae (Chaetoceros muelleri, Tetraselmis suecica, Tahitian Isochrysis sp. (T-iso) and Dunaliella tertiolecta) with distinctly different fatty acid profiles were grown in continuous culture and fed to prawn larvae (Penaeus japonicus, P. semisulcatus and P. monodon) as monospecific diets. The best two diets (C. muelleri and T. suecica) were also fed as a mixed diet. Experiments were run until the larvae fed the control diet of C. muelleri metamorphosed to Mysis 1. The survival and development (i.e. performance) of the larvae were affected by algal diet, and the diets were ranked in the order of decreasing nutritional value: C. muelleri ≥ T. suecica > T-iso > D. tertiolecta. Larvae fed a mixed diet of C. muelleri and T. suecica (2:3 by dry weight) performed as well or better than those fed C. muelleri, and the performance of both these groups of larvae was better than those fed T. suecica. The lipid and carbohydrate compositions of the algae had little or no effect on the lipid and carbohydrate compositions of the larvae or their performance. However, the larvae that performed best (i.e. those fed C. muelleri) had significantly more lipid and carbohydrate than those that performed worst (i.e. those fed D. tertiolecta). Larvae fed C. muelleri or the mixed-algae diet had higher proportions of the essential fatty acids eicosapentaenoic acid [EPA, 20:5(n-3)] and arachidonic acid [ARA, 20:4(n-6)] than the larvae fed on other diets. Furthermore, the larvae fed T. suecica, which showed intermediate performance between larvae fed C. muelleri and T-iso or D. tertiolecta, also had higher proportions of EPA and ARA. Both C. muelleri and T. suecica contained EPA and ARA, but T-iso and D. tertiolecta did not, except for trace amounts of EPA in T-iso. The fatty acid ARA appears to be much more important in the diet of larval prawns than has so far been considered. The level of the essential fatty acid docosahexaenoic acid [DHA, 22:6(n-3)] in the algal diet and the larvae was not related to the performance of the larvae; only C. muelleri and T-iso contained DHA. However, the nauplii contained large proportions of DHA, suggesting that these were sufficient to meet the larval requirements for DHA during their development to Mysis 1. Mixed-algae diets could improve the performance of larvae by providing a more comprehensive range of fatty acids. Received: 22 April 1998 / Accepted: 3 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号