首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO2 on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO2 stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO2 increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B × CO2 interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B × elevated CO2 on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.  相似文献   

2.
Uptake of Al, Cu, Fe, Mn, Ni, Ca, K, Mg, P, and S in Empetrum nigrum L. ssp. hermaphroditum Hagerup and Vaccinium myrtillus L. from Ni, Cu and SO2 contaminated sites in S?r-Varanger, northern Norway, were investigated. The primary objective was to study the effect of airborne heavy metal pollution on foliar element composition of these two dwarf shrubs. Ni distribution and availability in soils clearly indicate atmospheric deposition of Ni particulates in S?r-Varanger. Foliar Ni concentrations in E. hermaphroditum and V. myrtillus increased in relation to plant available Ni in corresponding soils. Leaves of E. hermaphroditum generally contained higher concentrations of Ni than leaves of V. myrtillus. Emissions influenced some features of leaf elemental composition of the two species in very different ways. In leaves of V. myrtillus, S increased in proportion to Ni and Cu, while levels of Mn decreased. In leaves of E. hermaphroditum, Fe increased in proportion to Ni and Cu, while levels of Ca decreased.  相似文献   

3.
The winter ephemeral Dimorphotheca pluvialis was grown in open-top chambers in ambient or elevated CO2 (350 or 650 micromol mol(-1)), combined with ambient (2.39 to 7.59 kJ m(-2) d(-1)) or increased (4.94 to 11.13 kJ m(-2) d(-1)) UV-B radiation. Net CO2 assimilation rate and leaf water use efficiency increased in elevated CO2, but increased UV-B did not affect gas exchange. Leaf biomass was greater under increased UV-B, but vegetative biomass was unaffected in elevated CO2. Initiation of reproduction was delayed, and proportional investment in reproductive biomass at harvest was reduced in elevated CO2. Increased UV-B stimulated reproduction, particularly in ambient CO2, but also in elevated CO2 at a later stage. Changes in reproductive phenology and prolonged development in elevated CO2 during the stressful late season could indirectly be detrimental to reproductive success of D. pluvialis, but stimulation of reproduction by enhanced UV-B may to some extent mitigate this.  相似文献   

4.
The projected doubling of current levels of atmospheric carbon dioxide concentration ([CO(2)]) during the next century along with increases in other radiatively active gases have led to predictions of increases in global air temperature and shifts in precipitation patterns. Additionally, stratospheric ozone depletion may result in increased ultraviolet-B (UV-B) radiation incident at the Earth's surface in some areas. Since these changes in the Earth's atmosphere may have profound effects on vegetation, the objectives of this paper are to summarize some of the recent research on plant responses to [CO(2)], temperature and UV-B radiation. Elevated [CO(2)] increases photosynthesis and usually results in increased biomass, and seed yield. The magnitude of these increases and the specific photosynthetic response depends on the plant species, and are strongly influenced by other environmental factors including temperature, light level, and the availability of water and nutrients. While elevated [CO(2)] reduces transpiration and increases photosynthetic water-use efficiency, increasing air temperature can result in greater water use, accelerated plant developmental rate, and shortened growth duration. Experiments on UV-B radiation exposure have demonstrated a wide range of photobiological responses among plants with decreases in photosynthesis and plant growth among more sensitive species. Although a few studies have addressed the interactive effects of [CO(2)] and temperature on plants, information on the effects of UV-B radiation at elevated [CO(2)] is scarce. Since [CO(2)], temperature and UV-B radiation may increase concurrently, more research is needed to determine plant responses to the interactive effects of these environmental variables.  相似文献   

5.
Patterns of environmental change in the biosphere include concurrent and sequential combinations of increasing ultraviolet (UV-B) and ozone (O(3)) at increasing carbon dioxide (CO(2)) levels; long-term changes are resulting mainly from stratospheric O(3) depletion, greater tropospheric O(3) photochemical synthesis, and increasing CO(2) emissions. Effects of selected combinations were evaluated in tomato (Lycopersicon esculentum cv. New Yorker) seedlings using sequential exposures to enhanced UV-B radiation and O(3) in differential CO(2) concentrations. Ambient (7.2 kJ m(-2 )day(-1)) or enhanced (13.1 kJ m(-2) day(-1)) UV-B fluences and ambient (380 microl l(-1)) or elevated (600 microl l(-1)) CO(2) were imposed for 19 days before exposure to 3-day simulated O(3) episodes with peak concentrations of 0.00, 0.08, 0.16 or 0.24 microl l(-1) O(3) in ambient or elevated CO(2). CO(2) enrichment increased dry mass, leaf area, specific leaf weight, chlorophyll concentration and UV-absorbing compounds per unit leaf area. Exposure to enhanced UV-B increased leaf chlorophyll and UV-absorbing compounds but decreased leaf area and root/shoot ratio. O(3) exposure generally inhibited growth and leaf photosynthesis and did not affect UV-absorbing compounds. The highest dose of O(3) eliminated the stimulating effect of CO(2) enrichment after ambient UV-B pre-exposure on leaf photosynthesis. Pre-exposure to enhanced UV-B mitigated O(3) damage to leaf photosynthesis at elevated CO(2).  相似文献   

6.
Possible links between the occurrence of Vaccinium myrtillus, V. vitis-idaea and Deschampsia flexuosa and rates of nitrogen deposition were investigated in 557 coniferous forest stands. In areas with high N-deposition, V. myrtillus was less frequent, less abundant and more susceptible to the leaf pathogen Valdensia heterodoxa than in areas with lower levels of N-deposition. The occurrence of V. vitis-idaea was also strongly negatively correlated with increasing N-deposition, but no such trend was found for D. flexuosa. In regions with high N-deposition, V. myrtillus was more common in stands dominated by Scots pine than in stands dominated by Norway spruce. This was not the case in regions with lower levels of N-deposition. The patterns observed accord with results from N-addition experiments that demonstrate significant effects on vegetation, caused by N-deposition. The data suggest that even low rates of N-deposition may decrease the abundance of the most dominant species in coniferous forest ground flora.  相似文献   

7.
We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO(2) and/or O(3) on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO(2) increased both the number of trees that flowered and the quantity of flowers (260% increase in male flower production), increased seed weight, germination rate, and seedling vigor. Elevated O(3) also increased flowering but decreased seed weight and germination rate. In the combination treatment (elevated CO(2)+O(3)) seed weight is decreased (20% reduction) while germination rate was unaffected. The evidence from this study indicates that elevated CO(2) may have a largely positive impact on forest tree reproduction and regeneration while elevated O(3) will likely have a negative impact.  相似文献   

8.
Continued world population growth results in increased emission of gases from agriculture, combustion of fossil fuels, and industrial processes. This causes changes in the chemical composition of the atmosphere. Evidence is emerging that increased solar ultraviolet-B (UV-B) radiation is reaching the earth's atmosphere, due to stratospheric ozone depletion. Carbon dioxide (CO(2)), ozone (O(3)) and UV-B are individual climate change factors that have direct biological effects on plants. Such effects may directly or indirectly affect the incidence and severity of plant diseases, caused by biotic agents. Carbon dioxide may increase plant canopy size and density, resulting in a greater biomass of high nutritional quality, combined with a much higher microclimate relative humidity. This would be likely to promote plant diseases such as rusts, powdery mildews, leaf spots and blights. Inoculum potential from greater overwintering crop debris would also be increased. Ozone is likely to have adverse effects on plant growth. Necrotrophic pathogens may colonize plants weakened by O(3) at an accelerated rate, while obligate biotroph infections may be lessened. Ozone is unlikely to have direct adverse effects on fungal pathogens. Ozone effects on plant diseases are host plant mediated. The principal effects of increased UV-B on plant diseases would be via alterations in host plants. Increased flavonoids could lead to increased diseased resistance. Reduced net photosynthesis and premature ripening and senescence could result in a decrease in diseases caused by biotrophs and an increase in those caused by necrotrophs. Microbial plant pathogens are less likely to be adversely affected by CO(2), O(3) and UV-B than are their corresponding host plants. Changes in host plants may result in expectable alterations of disease incidence, depending on host plant growth stages and type of pathogen. Given the importance of plant diseases in world food and fiber production, it is essential to begin studying the effects of increased CO(2), O(3) and UV-B (and other climate change factors) on plant diseases. We know very little about the actual impacts of climate change factors on disease epidemiology. Epidemiologists should be encouraged to consider CO(2), O(3) and UV-B as factors in their field studies.  相似文献   

9.
Phenogenetic response of silver birch populations and half-sib families to separate and combined elevated ozone (O3) concentrations and ultraviolet-B (UV-B) radiation dozes was studied at juvenile age in the climatic chambers. Significant population and family effects were found for seedling height, lamina width, and leaf damage. The exposure to UV-B radiation decreased genetic variation at the stage of seed germination. Complex exposure to UV-B and O3 caused an increase of genetic variation at the stage of intensive seedling growth: seedling height genetic variation in separate treatments increased from 23.7–38.6 to 33.7–65.7%, the increase for lamina width was from 10.2–13.9 to 13.6–31.8%. Different populations and families demonstrated differing response to elevated complex UV-B and O3 exposure. Changes of genetic intra-population variation were population-specific. Such changes in genetic variation under the impact of stressors can alter adaptation, stability, and competitive ability of regenerating populations in a hardly predictive way.  相似文献   

10.
Yan X  Yu D  Li YK 《Chemosphere》2006,62(4):595-601
An approximately four months long glasshouse experiment was conducted to examine the effects of elevated carbon dioxide (CO(2)) concentration (1,000 +/- 50 micromol mol(-1)) in the atmosphere on biomass accumulation and allocation pattern, clonal growth and nitrogen (N), phosphorus (P) accumulation by the submerged plant Vallisneria spinulosa Yan. Elevated CO(2) significantly increased V. spinulosa total fresh biomass ( approximately 130%) after 120 days, due to more biomass accumulation in all morphological organs than in those at ambient CO(2) (390 +/- 20 micromol mol(-1)). About 75% of the additional total biomass at elevated CO(2) was accounted for by leaf and rhizome (above ground) biomass and only 25% of it belonged to root and turion (below ground). However, the turions biomass exhibited a greater increase rate than that of organ above ground, which caused reduction in the above/below ground biomass ratio. The clonal growth of V. spinulosa responded positively to elevated CO(2). The number of primary ramets increased up to 1.4-folds at elevated CO(2) and induced a dense growth pattern. For nutrients absorption, concentration of N in leaf and in turion was significantly (p 相似文献   

11.
Highland (altitude 1600 m above sea level) and lowland (altitude -2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

12.
We studied the effects of elevated O3 (40-50 ppb) and CO2 (+100 ppm) alone and in combination on the growth onset, relative chlorophyll meter values, and reproductive development of meadow species grown in ground-planted mesocosms using open-top chambers. The 3-year study was conducted in the summers of 2002-2004. Elevated O3 decreased the early season coverage of plant communities and delayed the flowering of Campanula rotundifolia and Vicia cracca. The relative chlorophyll meter values of Fragaria vesca leaves were decreased by O3. Ozone also reduced the overall number of produced flowers, but as far as individual species were concerned, O3 had significant effects only on Campanula rotundifolia. In the case of Fragaria vesca, O3 decreased the fresh weight of individual berries. The effects of CO2 were less pronounced, and CO2 generally did not ameliorate the negative effects of O3. Changes in reproduction may affect the long-term fate of the whole community.  相似文献   

13.
Behaviour of forchlorfenuron residues in grape,soil and water   总被引:3,自引:0,他引:3  
Sharma D  Awasthi MD 《Chemosphere》2003,50(5):589-594
Persistence of forchlorfenuron residues in grape berries at harvest following its dip application as single or split doses to grape berry clusters and periodic dissipation of forchlorfenuron residues in grape berries following foliar spray application were studied. Periodic dissipation of forchlorfenuron residues following its fortification in soil and water were also studied. Splitting the dip application concentration of forchlorfenuron to grape berries reduced its residues in the berries at harvest, which persisted for more than 65 days from all treatments. In case of foliar application, however, the residues of forchlorfenuron in/on the grape berries persisted for 15-20 days only from three treatment concentrations of 2, 3 and 4 ml/l and dissipated with half-lives of 3.4-4.5 days. The residues of forchlorfenuron dissipated faster in soils maintained at field capacity moisture condition than in air dry soils. There was wide variation in its residue persistence in soil (DT50 = 15.1-121.3 days) depending on soil type and moisture condition. Forchlorfenuron residues persisted for more than 30 days in water and its dissipation was fastest at a water salinity level of 3.85 mmho/ cm although the rate of dissipation was not significantly affected by the change in salinity level from <0.04 to 5.90 mmho/cm.  相似文献   

14.
Highland (altitude 1600 m above sea level) and lowland (altitude −2 m below sea level) populations of the perennial herb Silene vulgaris (Moench) Garcke, were tested on their response to elevated levels of UV-B radiation. Highland populations typically receive high natural UV-B fluxes, whereas lowland populations receive a lower natural UV-B dose. Adaptation to high UV-B levels of the highland population is to be expected. Experimental comparison of growth rates, gas exchange rates, transpiration and biochemical parameters using adult plants as well as seedlings did not show a difference in the response to elevated UV-B levels between the two populations. Individuals of both populations were relatively insensitive to elevated UV-B radiation. The response of alpine and lowland populations of Silene vulgaris is discussed in relation to the dispersal of this species after the last ice age.  相似文献   

15.
Experimental results from plants receiving elevated doses of UV-B radiation generally show that Mediterranean forest species are well protected against increases in UV-B radiation. Natural adaptations to water stress and excess light (elevated concentrations of UV-B screening compounds, leaf hairs, thick cuticle and epidermis), and UV-B responses (thickening of the cuticle, increase in carotenoids) may avoid or counter-balance UV-B radiation damage. This response confirms that Mediterranean forest vegetation is adapted to face oxidative stress factors, such as elevated tropospheric ozone concentrations, drought and high radiation, including UV-B. Nevertheless, in the long term, species-specific and season-specific differential responses in growth, physiology, phenology and reproductive behaviour may alter the interactions between species and lead to slow but important changes in ecosystem structure and function.  相似文献   

16.
Separate effects of ammonium (NH4+) and nitrate (NO3-) on boreal forest understorey vegetation were investigated in an experiment where 12.5 and 50.0 kg nitrogen (N) ha(-1) year(-1) was added to 2 m2 sized plots during 4 years. The dwarf-shrubs dominating the plant community, Vaccinium myrtillus and V. vitis-idaea, took up little of the added N independent of the chemical form, and their growth did not respond to the N treatments. The grass Deschampsia flexuosa increased from the N additions and most so in response to NO3-. Bryophytes took up predominately NH4+ and there was a negative correlation between moss N concentration and abundance. Plant pathogenic fungi increased from the N additions, but showed no differences in response to the two N forms. Because the relative contribution of NH4+ and NO3- to the total N deposition on a regional scale can vary substantially, the N load a habitat can sustain without substantial changes in the biota should be set considering specific vegetation responses to the predominant N form in deposition.  相似文献   

17.
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.  相似文献   

18.
Although terrestrial vegetation has been exposed to UV-B radiation and ozone over the course of evolutionary history, it is essential to view the effects on vegetation of changing levels of these factors in the context of other features of climate change, such as increasing CO(2) levels and changes in temperature and precipitation patterns. Much of our understanding of the impacts of increased UV-B and ozone levels has come from studies of the effects of each individual factor. While such information may be relevant to a wider understanding of the roles that these factors may play in climate change, experience has shown that the interactions of environmental stresses on vegetation are rarely predictable. A further limitation on the applicability of such information results from the methodologies used for exposing plants to either factor. Much of our information comes from growth chamber, greenhouse or field studies using experimental protocols that made little or no provision for the stochastic nature of the changes in UV-B and ozone levels at the earth's surface, and hence excluded the roles of repair mechanisms. As a result, our knowledge of dose-response relationships under true field conditions is both limited and fragmentary, given the wide range of sensitivities among species and cultivars. Adverse effects of increased levels of either factor on vegetation are qualitatively well established, but the quantitative relationships are far from clear. In both cases, sensitivity varies with stage of plant development. At the population and community levels, differential responses of species to either factor has been shown to result in changes in competitiveness and community structure. At the mechanistic level, ozone generally inhibits photosynthetic gas exchange under both controlled and field conditions, and although UV-B is also inhibitory in some species under controlled conditions, others appear to be indifferent, particularly in the field. Both factors affect metabolism; a common response is increased secondary metabolism leading to the accumulation of phenolic compounds that, in the case of UV-B, offer the leaf cell some protection from radiation. Virtually no information is available about the effects of simultaneous or sequential exposures. Since both increased surface UV-B and ozone exposures have spatial and temporal components, it is important to evaluate the different scenarios that may occur, bearing in mind that elevated daytime ozone levels will attenuate the UV-B reaching the surface to some extent. The experimentation needed to acquire unequivocal effects data that are relevant to field situations must therefore be carried out using technologies and protocols that focus on quantification of the interactions of UV-B and ozone themselves and their interactions with other environmental factors.  相似文献   

19.
The potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha−1 yr−1) and a low N deposition site, Ben Wyvis (7.2 kg ha−1 yr−1). After two years, tissue N of Racomitrium shoots transplanted from higher N sites to Ben Wyvis only partially equilibrated to reduced N deposition whereas reciprocal transplants almost matched the tissue N of indigenous moss. Unexpectedly, moss shoot growth was stimulated at higher N deposition sites. However, moss depth and biomass increased in turfs transplanted to Ben Wyvis, apparently due to slower shoot turnover (suggested to result partly from decreased tissue C:N slowing decomposition), whilst abundance of vascular species declined. Racomitrium heath has the potential to recover from the impacts of N deposition; however, this is constrained by the persistence of enhanced moss tissue N contents.  相似文献   

20.
Reflection by waxy or resinous surface structures and hairs, repair reactions of biomolecules and induction of different sheltering components provide the means of plant protection from harmful solar UV-B radiation. Secondary products, especially flavonoids and phenolic acids as defense components are also important in plant tolerance to UV-B, fulfilling the dual role as screens that reduce UV-B penetration in plant tissues, and as antioxidants protecting from damage by reactive oxidant species. Plants are sensitive to UV-B radiation, and this sensitivity can be even more clone-specific than species-specific. The results available in the literature for deciduous trees and shrubs indicate that UV-B radiation may affect several directions in the interaction of woody species with biotic (herbivores) and abiotic (CO2 and nutrition) factors depending on the specific interaction in question. These multilevel interactions should have moderate ecological significance via the overall changed performance of woody species and shrubs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号