首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.  相似文献   

2.
Polychlorinated dibenzodioxins/furans (PCDD/F) were formed in substantial quantities in a pilot-scale fluidized bed combustor burning salt-laden waste wood, a common fuel for Canadian coastal pulp and paper mills. Formation of PCDD/F increased with increasing chloride content in the feed, and appeared to correlate with the chlorine content in the fly ash. It took a very long time for the ash chlorine content to stabilize, suggesting that chlorine transferred slowly from the flue gas to the ash. The baghouse may contribute largely to formation of the PCDD/F, owing to its temperature range and the potentially long residence time for ash particles. Controlling the baghouse temperature to reduce the PCDD/F formation in the baghouse should be effective in reducing the total emission level. While sulphur addition was found to reduce the emission level by as much as 90%, the emission level was still above the regulated level for the mills burning salt-laden wood under the conditions of the present study. No relation between the emission level and CO concentration in the flue gas was observed.  相似文献   

3.
Assessing sorbents for mercury control in coal-combustion flue gas   总被引:1,自引:0,他引:1  
Sorbent injection for Hg control is one of the most promising technologies for reducing Hg emissions from power-generation facilities, particularly units that do not require wet scrubbers for SO2 control. Since 1992, EPRI has been assessing the performance of Hg sorbents in pilot-scale systems installed at full-scale facilities. The initial tests were conducted on a 5,000-acfm (142-m3/min) pilot baghouse. Screening potential sorbents at this scale required substantial resources for installation and operation and did not provide an opportunity to characterize sorbents over a wide temperature range. Data collected in the laboratory and in field tests indicate that sorbents are affected by flue gas composition and temperature. Tests carried out in actual flue gas at a number of power plants also have shown that sorbent performance can be site-specific. In addition, data collected at a field site often are different from data collected  相似文献   

4.
根据双模吸收理论及SO2在溶液中电离特性,建立了逆流喷淋塔的SO2吸收模型,在考虑浆液飞溅到塔壁的影响后,模拟结果与实验值吻合较好。根据吸收模型,对塔内液气比和浆液的含固率等因素进行了分析。研究表明:减少浆液飞溅到塔壁可提高浆液利用率及脱硫装置性能;根据烟气中SO2的初始浓度及最终脱硫效率,可合理选择液气比及吸收时问(塔的高度);浆液中的含固率直接影响到SO2的吸收速率、循环浆液量、脱硫效率及浆液中SO2浓度等,在液气比较小时,含固率对脱硫效率的影响尤其明显。  相似文献   

5.
The United Power Association’s dry FGD system at Stanton, North Dakota was the first utility-operated lime spray dryer to be put into service in the United States. At 60 MW in size, it utilizes a single spray dryer vessel with three rotary atomizers and a ten-compartment fabric filter. It is currently operating at better than expected efficiency and Is meeting state and federal air quality requirements. Start-up and operation have shown that certain areas of design and operating conditions are critical to reliable operation. Flue gas, slurry, and water distribution and mixing must be carefully controlled if reliable, long term operation is to be achieved. Likewise, water chemistry Is Important in the reagent preparation equipment. Start-up of the system was accomplished In a step-wise fashion to bring the baghouse on line first, followed by the spray dryer. The spray dryer was operated at gradually lower outlet temperatures until design conditions were met. Measures taken since start-up to ensure reliable operation, and operation over an eighteen month period are discussed. Both particulate and SO2 emission performance are evaluated.  相似文献   

6.
The recent promulgation of stack height regulations and possible changes in the National Ambient Air Quality Standards for sulfur dioxide and the associated dispersion model methodologies, could require older power plants to develop new compliance strategies and upgrade emission control systems. In such situations, an inexpensive, moderate removal efficiency flue gas desulfurization technology could maintain the cost effectiveness of these plants. Such a technology was selected by the Department of Energy for demonstration in its Acid Rain Precursor Control Technology Initiative. The process applies the rotary atomizer techniques developed for lime slurry dry flue gas desulfurization spray absorbers, and utilizes existing ductwork and particulate collectors. This induct scrubbing technology is anticipated to result in a dry desulfurization process of moderate removal efficiency. The critical elements for successful application are (i) adequate mixing for efficient reactant contact, (ii) sufficient residence time to produce a non-wetting product, and (iii) appropriate ductwork cross sectional areas to prevent deposition of reaction products before drying. The ductwork in many older power plants, previously modified to meet 1970 Clean Air Act requirements for particulate control, usually meets these criteria. A pilot study of the process is now in design-construct phase. Testing will start in 1987 and determine conditions under which the technology would be a cost effective approach to meeting emission reduction design criteria  相似文献   

7.
湿式逆流喷淋脱硫塔中SO_2吸收特性的研究   总被引:1,自引:1,他引:0  
根据双模吸收理论及SO2在溶液中电离特性,建立了逆流喷淋塔的SO2吸收模型,在考虑浆液飞溅到塔壁的影响后,模拟结果与实验值吻合较好。根据吸收模型,对塔内液气比和浆液的含固率等因素进行了分析。研究表明:减少浆液飞溅到塔壁可提高浆液利用率及脱硫装置性能;根据烟气中SO2的初始浓度及最终脱硫效率,可合理选择液气比及吸收时间(塔的高度);浆液中的含固率直接影响到SO2的吸收速率、循环浆液量、脱硫效率及浆液中SO2浓度等,在液气比较小时,含固率对脱硫效率的影响尤其明显。  相似文献   

8.
湿法烟气脱硫反应过程的实验研究   总被引:1,自引:1,他引:0  
在石灰石/石膏湿法烟气脱硫中试台上,系统开展了浆液pH值、飞灰浓度、液气比、入口SO2浓度、烟气速度和氧化方式等对脱硫反应过程影响的实验研究。实验表明,脱硫效率随着石膏浆液pH值、液气比的升高而增加,且入口SO2浓度越高,液气比越低,影响效应越明显;脱硫效率随着烟气速度、烟气温度和入口SO2浓度的增加而下降;石膏浆液中飞灰含量对系统脱硫效率具有一定的促进作用:pH值>5.6,飞灰浸出液中Fe3+含量相对较低,Fe3+对脱硫反应过渡态催化氧化影响程度较轻,不同工况脱硫效率差别不大。pH值<5.6,飞灰浸出液中Fe3+含量随pH值降低而增大,增效效果逐渐显著;氧化方式对脱硫反应过程有明显的影响,强制氧化工艺的脱硫效率比自然氧化的高5%左右。  相似文献   

9.
The active soda process1 was applied for desulfurlzatlon of flue gases emitted by a plant burning heavy fuel oil In a rotary drum drier for stone aggregate. The flue gas capacity of the plant was about 6,7 m3/s at normal conditions. The SO2 concentration varied between 400– 500 ppm. The solid, dry and fine-grained NaHCO3 of good quality was fed directly into the hot gas stream at the outlet of the rotary drier In two variants—with and without grinding. The mean particle size was 0.180 m-3 or 0.070 m-3, respectively. The achieved desulfurizatlon degree was shown to be directly dependent on the flue gas temperature and on the grinding effect, as well as on the normalized stoichiometric ratio. The highest achieved desulfurization degree amounted up to 74 percent. During the design of the desulfurization process no pilot plant installations and tests were necessary, and for the final process no special chemical reactor was used.  相似文献   

10.
危险废物回转式流化冷渣多段焚烧系统焚烧特性研究   总被引:1,自引:0,他引:1  
危险废物的处理和处置是摆在我国各级市政府面前的紧迫任务。然而我国已经运行的危险废物焚烧装置普遍存在回转窑挂壁结渣、热灼减率偏高和污染排放超标等问题,作者通过将回转窑和流化床特点相结合的方法提出了一种新型危险废物回转式流化冷渣多段焚烧处置装置。该装置采用回转窑(一燃室)、二燃室和流化床结合的热解-流化焚烧工艺,特别是采用控制窑头温度避免了回转窑挂壁结渣;采用流化冷渣装置延长未燃烬渣的焚烧时间,解决了热灼减率偏高问题;水冷式烟气急冷装置可以将烟气温度从1 100℃降到200℃,防止了二恶英的尾部低温再生成。该系统运行稳定可靠,可以处理医疗垃圾和大多数的固态和液态危险废物,实现了烟气污染物尤其是二恶英排放达到国家标准的目标。同时对该系统运行时窑头温度分布、二燃室炉膛出口氧量变化、回转窑和炉膛升温特性、燃烧室外壁温度分布等几方面运行数据都进行了详细的介绍,为危险废物焚烧炉的运行提供了宝贵的经验数据。  相似文献   

11.
A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from approximately 96% at the inlet of the reactor to approximately 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

12.
石灰石颗粒移动床脱硫工艺参数是影响脱硫效率和操作压降变化的重要因素,考虑到工艺参数对脱硫过程的影响,基于正交实验方法,通过直观分析和方差分析得到喷淋密度、空床气速、SO2浓度、烟气温度和床层下移速度对脱硫效率影响程度的主次顺序和脱硫效率与各因素之间的关系,并且分析了各因素对脱硫效率的影响规律。研究发现,各因素对脱硫效率的影响程度依次是空床气速>喷淋密度>SO2浓度>烟气温度>床层下移速度。喷淋密度对脱硫效率的影响高度显著,呈正相关;空床气速对脱硫效率的影响高度显著,呈负相关;SO2浓度和烟气温度对脱硫效率有影响但不显著,呈负相关。床层下移速度与脱硫效率呈正相关。  相似文献   

13.
Abstract

This investigation studied the effects of injecting dry hydrated lime into flue gas to reduce sulfur trioxide, (SO3) concentrations and consequently stack opacity at the University of Missouri-Columbia power plant. The opacity was due to sulf uric acid mist forming at the stack from high SO3 concentrations. As a result of light scattering by the mist, a visible plume leaves the stack. Therefore, reducing high concentrations of SO3 reduces the sulfuric acid mist and consequently the opacity. To reduce SO3 concentrations, dry hydrated lime is periodically injected into the flue gas upstream of a baghouse and downstream of an induced draft fan. The hydrated lime is transported downstream by the flue gas and deposited on the filter bags in the baghouse forming a filter cake. The reaction between the SO3 and the hydrated lime takes place on the filter bags. The hydrated lime injection system has resulted in at least 95% reduction in the SO3 concentration and has reduced the opacity to acceptable limits. Low capital equipment requirements, low operating cost, and increased bag life make the system very attractive to industries with similar problems.  相似文献   

14.
石灰和石灰石湿法脱硫系统运行控制指标探讨   总被引:9,自引:0,他引:9  
钙基脱硫剂湿式脱硫系统是目前市场上广泛采用的烟气脱硫系统。文章分析了石灰和石灰石自身不同的物理化学特性对湿法脱硫系统运行控制指标的影响,得出了对于采用石灰和石灰石作为脱硫剂的湿式脱硫系统的最佳pH为8.0和5.8~6.2,脱硫浆液流量与烟气流量之比为10.0和5.6,钙硫比(化学过量比)为1.05~1.15和1.25~1.60。  相似文献   

15.
EPA’s efforts to develop low cost, retrofitable flue gas cleaning technology include the development of highly reactive sorbents. Recent work addressing lime enhancement and testing at the bench-scale followed by evaluation of the more promising sorbents in a pilot plant are discussed here.

The conversion of Ca(OH)2 with SO2 increased several-fold compared with Ca(OH)2 alone when Ca(OH)2 was slurrled with fly ash first and later exposed to SO2 in a laboratory packed bed reactor. Ca(OH)2 enhancement increased with the increased fly ash amount. Dlatomaceous earths were very effective reactivity promoters of lime-based sorbents. Differential scanning calorimetry of the promoted sorbents revealed the formation of a new phase (calcium silicate hydrates) after hydration, which may be the basis for the observed Improved SO2 capture.

Fly ash/lime and diatomaceous earth/lime sorbents were tested in a 100 m3/h pilot facility incorporating a gas humidifier, a sorbent duct injection system, and a baghouse. The inlet SO2 concentration range was 1000-2500 ppm. With once-through dry sorbent injection into the humidified flue gas [approach to saturation 10–20°C (18–36°F) in the baghouse], the total SO2 removal ranged from 50 to 90 percent for a stoichiometric ratio of 1 to 2. Recycling the collected solids resulted in a total lime utilization exceeding 80–90 percent. Increased lime utilization was also investigated by the use of additives.  相似文献   

16.
石灰石湿法脱硫过程中SO2吸收数学模型   总被引:4,自引:1,他引:3  
为揭示石灰石湿法脱硫体系中喷淋塔内SO2的浓度和脱硫效率的变化情况,针对喷淋塔内石灰石在气膜控制、气液膜控制和固体溶解控制的3个不同阶段,以双膜理论为基础,以单个石灰石颗粒为研究对象,通过石灰石在不同阶段的转化率和粒径变化,得到SO2在不同阶段脱硫效率随时间的变化规律,建立SO2吸收的数学模型.模型计算结果表明,在烟气行程上,脱硫效率受SO2气膜传质阻力和石灰石溶解速率限制.在吸收塔底部和上端SO2吸收速率较低,在SO2和石灰石摩尔比在适宜条件下,有效吸收段高度为2 m左右.理论模型揭示的规律对喷淋塔的设计和运行参数选取有一定借鉴意义.  相似文献   

17.
A laboratory size spray dry scrubbing unit consisting of a spray dryer and a pulse Jet baghouse was used to study the effect of grinding recycle waste on SO2 removal across the spray dryer and on sorbent utilization. The equipment treats simulated flue gas with a dry flow rate of 1.5 m3 h?1 (stp) and utilizes an ultrasonic nozzle for atomization. The apparatus was initially tested over a broad range of operating conditions; a close agreement in SO2 removal was found with data from much larger units. The effect of grinding the FGD recycle material on the SO2 removal across the spray dryer was found to be great. Grinding the recycle material can enhance the SO2 removal efficiency to a level comparable to operation with a large excess of fresh lime.  相似文献   

18.
Controlled bench-scale laboratory experiments were conducted to evaluate the recovery of ammonia (NH3) and hydrogen sulfide (H2S) from dynamic isolation flux chambers. H2S (80-4000 ppb) and NH3 (5000-40,000 ppb) samples were diffused through the flux chamber to simulate ground level area source emissions while measuring the inlet and outlet flux chamber concentrations simultaneously. Results showed that the recovery of H2S during a 30-min sampling time was almost complete for concentrations >2000 ppb. At the lowest concentration of 80 ppb, 92.55% of the H2S could be recovered during the given sampling period. NH3 emissions exhibited similar behavior between concentrations of 5000-40,000 ppb. Within the 30-min sampling period, 92.62% of the 5000-ppb NH3 sample could be recovered. Complete recovery was achieved for concentrations >40,000 ppb. Predictive equations were developed for gas adsorption. From these equations, the maximum difference between chamber inlet and outlet concentrations of NH3 or H2S was predicted to be 7.5% at the lowest concentration used for either gas. In the calculation of emission factors for NH3 and H2S, no adsorption correction factor is recommended for concentrations >37,500 ppb and 2100 ppb for NH3 and H2S, respectively. The reported differences in outlet and inlet concentration above these ranges are outside the fullscale sensitivity of the gas sensing equipment. The use of 46-90 m of Teflon tubing with the flux chambers has apparently no effect on gas adsorption, because recovery was completed almost instantaneously at the beginning of the tests.  相似文献   

19.
Activated carbon injection for Hg control in a 500-lb/hr pilot-scale coal-fired furnace equipped with a fabric filter for particulate control was evaluated at different operating conditions. The pilot-scale tests showed that Hg removal was improved at lower temperatures and higher C/Hg ratios. The two-stage mathematical model developed to describe Hg removal using powdered activated carbon injection upstream of a baghouse filter was used to obtain Langmuir isotherm parameters as a function of temperature by fitting the model to a subset of experimental data. The predictive capability of the model was then tested by comparing model calculations with additional experimental data from this system obtained using different operating temperatures and sorbent to Hg ratios. Model predictions were in good agreement with experimentally measured Hg removal efficiency. Based on the model predictions, Hg removal in the duct appears to be limited and higher C/Hg ratio, lower operating temperature, and longer cleaning cycle of the baghouse filter should be utilized to achieve higher Hg removal in this system.  相似文献   

20.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号