首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120-250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux.  相似文献   

2.
Fourteen Italian cultivars of Phaseolus vulgaris were exposed to a single pulse of ozone (O(3), 150 nl l(-1)) or to filtered air (<3 nl l(-1)) for 3.5 h. O(3) sensitivity was assessed by recording the extent of visible symptoms, effects on chlorophyll (Chl) content and changes in Chl a fluorescence parameters. This paper reports the results of an initial screening of 14 bean cultivars that was used to select a small number of cultivars for further work. Seven cultivars showed visible symptoms of injury in the range of 2-60 h after the end of the O(3) fumigation. O(3) significantly depressed total Chl content in most cultivars and a significant correlation was found between Chl content and visible symptoms. Most cultivars showed a significant change in the F(v)/F(m) ratio, even when there were no visual symptoms. There was no relationship between the extent of visual symptoms and quenching coefficients, indicating that these parameters were of no use in the determination of sensitivity to O(3) stress.  相似文献   

3.
Ozone (O3) exposure at Italian background sites exceeds UN/ECE concentration-based critical levels (CLe(c)), if expressed in terms of AOT40. Yet the occurrence of adverse effects of O3 on forests and crops is controversial. Possible reasons include (i) ability of response indicators to provide an unbiased estimate of O3 effects, (ii) setting of current CLe(c) in terms of cut-off value and accumulation level, (iii) response functions adopted to infer a critical level, (iv) environmental limitation to O3 uptake and (v) inherent characteristics of Mediterranean vegetation. In particular, the two latter points suggest that critical levels based on accumulated stomatal flux (CLe(f)) can be a better predictor of O3 risk than CLe(c). While this concept is largely acknowledged, a number of factors may limit its applicability for routine monitoring. This paper reviews levels, uptake and vegetation response to O3 in Italy over recent years to discuss value, uncertainty and feasibility of different approaches to risk assessment.  相似文献   

4.
Ozone (O(3)) flux into Norway spruce (Picea abies) and cembran pine (Pinus cembra) needles was estimated under ambient conditions at six rural sites between 580 and 1950 m a.s.l. We also assessed age-related differences in O(3) flux by examining changes in leaf conductance across the life span of Norway spruce. At the leaf level O(3) flux into the needles was effectively controlled by stomatal conductance and, hence by factors such as temperature, irradiance and humidity, which control stomatal conductance. Seasonal variations in O(3) flux were mainly attributed to the course of the prevailing temperature. During the growing season, however, data have emphasised leaf-air vapour pressure difference as the environmental factor most likely to control stomatal conductance and O(3) flux into the needles. In the sun crown stomatal conductance averaged over the growing season decreased with increasing tree age from 42.0+/-3.5 mmol O(3) m(-2) s(-1) in 17-year-old trees to 7.1+/-1.0 mmol O(3) m(-2) s(-1) in 216-year-old trees, indicating that O(3) concentration in the substomatal cavities is higher in young than in old trees. Independent from tree age stomatal conductance and O(3) flux were approximately 50% lower in shade needles as compared to sun-exposed needles. Stomatal conductance was also greater in the current flush (24+/-5.6 mmol O(3) m(-2) s(-1)) and in 1-year old needles (16+/-4 mmol O(3) m(-2) s(-1)) than in older needle age classes (12+/-1 mmol O(3) m(-2) s(-1), averaged across the four older needle age classes). In trees similar in age (60-65 years old) average O(3) flux into sun needles increased from 0.55+/-0.36 nmol m(-2) s(-1) at the valley floor to 0.9 nmol m(-2) s(-1) in 1950 m a.s.l. Cumulative O(3) uptake during the vegetation period increased from 11.4+/-1.7 mol m(-2) in the valley to 14 mol m(-2) at the alpine timberline. Although stomatal conductance provides the principal limiting factor for O(3) flux, additional field research is necessary in order to improve our understanding concerning the quantitative 'physiological threshold dose' which internally can be active and can have adverse effects of O(3) on forest trees.  相似文献   

5.
Ambient concentrations of ozone (O(3)) and carbon dioxide (CO(2)) were measured at locations from the forest floor to the top of the canopy in a deciduous forest at the Moshannon State Forest in northcentral Pennsylvania. O(3) concentrations were measured from May-September for three years (1993-1995) while CO(2) concentrations were measured only during July and August of 1994. O(3) concentrations increased steadily during the day at all locations, peaking during the middle to late afternoon hours. O(3) concentrations then steadily declined to their lowest point, just before dawn. Vertical O(3) concentration gradients varied seasonally and among years. However, O(3) concentrations were highest within the forest canopy and lowest at the forest floor, with an average difference of approximately 13%. Differences in O(3) concentrations between the canopy and forest floor were greatest at night. O(3) concentrations were slightly higher at locations within the canopy than above the canopy. CO(2) concentrations were consistenly higher near the forest floor and were higher above the canopy than within the canopy. CO(2) concentrations were higher at night than during the day at all locations, especially near the forest floor.  相似文献   

6.
Tropospheric ozone (O(3)) is considered one of the most important air pollutants affecting human health. The role of peri-urban vegetation in modifying O(3) concentrations has been analyzed in the Madrid region (Spain) using the V200603par-rc1 version of the CHIMERE air quality model. The 3.7 version of the MM5 meteorological model was used to provide meteorological input data to the CHIMERE. The emissions were derived from the EMEP database for 2003. Land use data and the stomatal conductance model included in CHIMERE were modified according to the latest information available for the study area. Two cases were considered for the period April-September 2003: (1) actual land use and (2) a fictitious scenario where El Pardo peri-urban forest was converted to bare-soil. The results show that El Pardo forest constitutes a sink of O(3) since removing this green area increased O(3) levels over the modified area and over down-wind surrounding areas.  相似文献   

7.
The aim of this study was to test and select one or more highly sensitive, specific and environmentally successful Egyptian bioindicator plants for ozone (O3). For that purpose more than 30 Egyptian species and cultivars were subjected to extensive screening studies under controlled environmental and pollutant exposure conditions to mimic the Egyptian environmental conditions and O3 levels in urban and rural sites. Four plant species were found to be more sensitive to O3 than the universally used O3-bioindicator, tobacco Bel W3, under the Egyptian environmental conditions used. These plant species, jute (Corchorus olitorius c.v. local), clover (Trifolium alexandrinum L. c.v. Masry), garden rocket (Eruca sativa c.v. local) and alfalfa (Medicago sativa L. c.v. local), ranked in order of decreasing sensitivity, exhibited typical O3 injury symptoms faster and at lower 03 concentrations than Bel W3. Three variables were tested in search of a reliable tool for the diagnosis and prediction of O3 response prior to the appearance of visible foliar symptoms: pigment degradation, stomatal conductance (g(s)) and net photosynthetic CO2 assimilation (Pnet). Pigment degradation was found to be unreliable in predicting species sensitivity to O3. Evidence supporting stomatal conductance involvement in 03 tolerance was found only in tolerant species. A good correlation was found between g(s), restriction of O3 and CO2 influx into the mesophyll tissues, and Pnet. Changes in Pnet seemed to depend largely on fluctuations in g(s).  相似文献   

8.
Tropospheric ozone (O(3)) was first determined to be phytotoxic to grapes in southern California in the 1950s. Investigations followed that showed O(3) to be the cause of foliar symptoms on tobacco and eastern white pine. In the 1960s, "X" disease of ponderosa pines within the San Bernardino Mountains was likewise determined to be due to O(3). Nearly 50 years of research have followed. Foliar O(3) symptoms have been verified under controlled chamber conditions. Studies have demonstrated negative growth effects on forest tree seedlings due to season-long O(3) exposures, but due to complex interactions within forest stands, evidence of similar losses within mature tree canopies remains elusive. Investigations on tree growth, O(3) flux, and stand productivity are being conducted along natural O(3) gradients and in open-air exposure systems to better understand O(3) effects on forest ecosystems. Given projected trends in demographics, economic output and climate, O(3) impacts on US forests will continue and are likely to increase.  相似文献   

9.
Concentrations of nitrogen gases (NH(3), NO(2), NO, HONO and HNO(3)) and particles (pNH(4) and pNO(3)) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO(2)) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH(3)). A combination of gradient method (NH(3) and NO(x)) and resistance modelling techniques (HNO(3), HONO, pNH(4) and pNO(3)) was used to calculate dry deposition of nitrogen compounds. Net flux of NH(3) amounted to -64 ng N m(-2) s(-1) over the measuring period. Net fluxes of NO(x) were upward (8.5 ng N m(-2) s(-1)) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha(-1) yr(-1) and consisted for almost 80% of NH(x). Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N (+/-15 kg N ha(-1) yr(-1)) within the canopy.  相似文献   

10.
In an effort to examine ozone (O3) deposition over a forest site in the Czech Republic, a low cost eddy flux experiment using slow response ozone and temperature sensors was implemented in July 1993 within the Brdy Mountains. Half-hour 2-Hz ozone and sensible heat measurements made at the Brdy Mountains for 98 days during the period 7 July 1994-20 October 1994 are analyzed and reported. While the Czech Brdy Mountains AOT40 level for the overall 104 day period was 7.6 ppm h (15.1 ppm h for the full 24-h summation), indicating a slight potential for 03 injury, the 1994 summer to autumn'measured forest O3 uptake was 2.4 (+/- 0.9) g m(-2), not unusually high compared to other studies. Average summer midday 03 fluxes and depositidn velocities were -1.0 (+/- 0.6) microg m(-2) s(-1) and 1.1 (+/- 0.7) cm s(-1). and autumn values were -0.36 (+/- 0.4) microg m(-2) s(-1) and 0.7 (+/- 0.5) cm s(-1) respectively. A unique contribution of this study is the first time demonstrated use of slow responding sensors for eddy covariance flux measurements at heights of 20 m above a forest.  相似文献   

11.
Hydrogen peroxide-assisted UV photodegradation of Lindane   总被引:1,自引:0,他引:1  
Aqueous solutions of gamma-hexachlorocyclohexane (Lindane) were photolyzed (lambda=254 nm) under a variety of solution conditions. The initial concentrations of hydrogen peroxide (H(2)O(2)) and Lindane varied from 0 to 20 mM and 0.21 to 0.22 microM, respectively, the pH ranged from 3 to 11, and several concentration ratios of Suwannee River humic acid and fulvic acid were dissolved in the irradiated solutions. Lindane rapidly reacted, and the maximum reaction rate constant (9.7 x 10(-3) s(-1)) was observed at pH 7 and initial [H(2)O(2)]=1 mM. Thus, 90% of the Lindane is destroyed in approximately 4 min under these conditions. In addition, within 15 min, all chlorine atoms were converted to chloride ion, indicating that chlorinated organic by-products do not accumulate. The reactor was characterized by measuring the photon flux (7.04 x 10(-6) E s(-1)) and the cumulative production of *OH during irradiation. The cumulative *OH production during irradiation was fastest at an initial [H(2)O(2)]=5 mM (k=0.77 micro M s(-1)).  相似文献   

12.
Ali I  Aboul-Enein HY 《Chemosphere》2002,48(3):275-278
The speciation of arsenic [As(III) and As(V)] and chromium [Cr(III) and Cr(VI)] was carried out by high performance liquid chromatography. The column used was Econosil C18 (250 x 4.6 mm i.d., particle size 10 microm). The mobile phases consisted of water-acetonitrile (80:20, v/v) for arsenic and 10 mM ammonium acetate buffer (6.0 pH)-acetonitrile (10:90, v/v) for chromium speciation separately and respectively. The detection was carried out by UV-Vis at 410 nm and atomic absorption spectrometer (AAS) respectively and separately. The values of alpha and Rs of As(III) and As(V) species were 1.4 and 1.5 respectively while the values of alpha and Rs for Cr(III) and Cr(VI) were 1.35 and 0.2 respectively. The effect of the acetonitrile percentages was also carried out on the speciation of arsenic only. The relative standard deviation and limit of detection were in the range of 0.01-0.02 and 0.4-1.0 microg/ml respectively.  相似文献   

13.
Ozone and forests in South-Western Europe   总被引:1,自引:0,他引:1  
The paper provides basic information about background, objectives and structure of O3SWE (Ozone at the permanent monitoring plots in South-Western Europe), an international co-operative project aimed at evaluating O3 concentrations, cumulative exposure, uptake and effects on forest vegetation in four countries of South-Western Europe (France, Italy, Luxenbourg, Spain and Switzerland). The project covers a total of 83 permanent plots of the EU and UN/ECE intensive forest monitoring programme and span over three years of investigation (2000-2002). The O3SWE project aims to demonstrate how, using data collected routinely in an intensive forest monitoring network, O3 exposure, flux and effects can be assessed and exceedances critically evaluated.  相似文献   

14.
This paper presents a cohesive view of the dynamics of ambient O(3) exposure and adverse crop response relationships, coupling the properties of photochemical O(3) production, flux of O(3) from the atmosphere into crop canopies and the crop response per se. The results from two independent approaches ((a) statistical and (b) micrometeorological) were analyzed for understanding cause-effect relationships of the foliar injury responses of tobacco cv Bel-W3 to the exposure dynamics of ambient O(3) concentrations. Similarly, other results from two independent approaches were analyzed in: (1) establishing a micrometeorological relationship between hourly ambient O(3) concentrations and their vertical flux from the air into a natural grassland canopy; and (2) establishing a statistical relationship between hourly ambient O(3) concentrations in long-term, chronic exposures and crop yield reductions. Independent of the approach used, atmospheric conditions appeared to be most conducive and the crop response appeared to be best explained statistically by the cumulative frequency of hourly ambient O(3) concentrations between 50 ppb and 90 ppb (100 and 180 microg m(-3)). In general, this concentration range represents intermediate or moderately enhanced hourly O(3) values in a polluted environment. Further, the diurnal occurrence of this concentration range (often approximately between 0900 and 1600 h in a polluted, agricultural environment) coincided with the optimal CO(2) flux from the atmosphere into the crop canopy, thus high uptake. The frequency of occurrence of hourly O(3) concentrations > 90 ppb (180 microg m(-3)) appeared to be of little importance and such concentrations in general appeared to occur during atmospheric conditions which did not facilitate optimal vertical flux into the crop canopy, thus low uptake. Alternatively, when > 90 ppb (180 microg m(-3)) O(3) concentrations occurred during the 0900-1600 h window, their frequency of occurrence was low in comparison to the 50-90 ppb (100-180 microg m(-3)) range. Based on the overall results, we conclude that if the cumulative frequency of hourly ambient O(3) concentrations between 50-62 ppb (100-124 microg m(-3)) occurred during 53% of the growing season and the corresponding cumulative frequency of hourly O(3) concentrations between 50-74 ppb (100-148 microg m(-3)) occurred during 71% of the growing season, then yield reductions in sensitive crops could be expected, if other factors supporting growth, such as adequate soil moisture are not limiting.  相似文献   

15.
This study considers the characteristics of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)) and sulfur dioxide (SO(2)) in two major South Korean cities, including the capital city of Seoul, over a time period of 7-8 years. Changes in the annual mean and percentiles of the daily 1-h maximum and other hour-based concentrations varied according to the compound and city type. Seasonal variations varied according to the compound, yet not with the city type. Both Seoul and Taegu exhibited lower O(3) concentrations in July compared to other summer months. There was a high degree of correlation between the daily 1- and 8-h maximum or daily mean concentrations of all compounds in both cities, with an R(2) of 0.66-0.90 at p<0.0001. It was indicated that for CO and O(3), the 8-h standard was more stringent than the 1-h standard, while for NO(2) and SO(2), the 1-h standard was more stringent than the 24-h standard. The correlation coefficients between the daily 1-h maximum and daily mean concentrations decreased as the maximum concentration values of NO(2), O(3 ), and SO(2) increased in the two cities. For all the target compounds, Seoul recorded a substantially higher frequency of days with concentrations above the relevant 1-, 8-, and 24-h standards compared to Taegu.  相似文献   

16.
The rate coefficient for the reaction of nitrite with hypochlorite and hypochlorous acid has been studied using spectrophotometric measurements. The reaction rate has been determined in a wide range of H(+) concentration (5< or =-log[H(+)]< or =11). The kinetics were carried out as a function of NO(2)(-), H(+) and total hypochlorite ([HOCl](total)=[HOCl]+[ClO(-)]+[ClNO(2)]) concentrations. The observed overall rate law is described by: -d[HClO](T)dt=[a[NO(2)(-)](2)+b[NO(2)(-)]][H(+)](2)c+d[H(+)]+e[NO(2)(-)][H(+)](2)[HOCl](total)At T=298 K and in Na(2)SO(4) at an ionic strength (I=1.00 M), we obtained using a nonlinear fitting procedure: a=(1.83+/-0.36)x10(7) s(-1), b=(1.14+/-0.23)x10(5) Ms(-1), c=(1.12+/-0.17)x10(-13) M, d=(1.43+/-0.29)x10(-6) M(2) and e=(1.41+/-0.28)x10(3) M where the errors represent 2sigma. According to the overall rate law, a/b=k(1)/k(3), b/e=k(3), c=K(w), d/c=K(a), d=K(a)K(w) and e=K(1)K(a). In Na(2)SO(4) at an ionic strength (I=1.00 M), the values of K(1) and K(a) are (1.1+/-0.1)x10(-4) and 1.28x10(7) M(-1), respectively. A mechanism is proposed for the NO(2)(-) oxidation which involves the reversible initial step: NO(2)(-)+HOCl left harpoon over right harpoon ClNO(2)+OH(-) (K(1)), while ClNO(2) undergoes the two parallel reactions: attack by NO(2)(-) (k(1)) and hydrolysis (k(3)). ClNO(2) and N(2)O(4) are proposed as important intermediates as they control the mechanism. The rate coefficients k(1) and k(3) have been determined at different ionic strengths in NaCl and Na(2)SO(4). The influence of the ionic strength and ionic environment has been studied in this work.  相似文献   

17.
Sitka spruce and Norway spruce were grown in controlled environments and then exposed to ozone (O3) for short periods as in mid-afternoon episodes experienced in the forest. For concentrations of between 20 and 300 nl litre(-1) there were linear relationships between exposure concentration and O3 uptake rates. Increasing photon flux densities increased rates of photosynthesis and transpiration, the increases being larger in actively growing than dormant seedlings. Physiological condition (dormancy or active growth), species and photon flux density were found to influence O3 flux via their effects on stomatal conductance. Exposure to 80 nl litre(-1) O3 resulted in consistent increases of stomatal conductance and there were also indications that water-use efficiency was decreased.  相似文献   

18.
The European critical levels (CLs) to protect vegetation are expressed as an accumulative exposure over a threshold of 40 ppb (nl l(-1)). In view of the fact that these chamber-derived CLs are based on ozone (O(3)) concentrations at the top of the canopy the correct application to ambient conditions presupposes the application of Soil-Vegetation-Atmosphere-Transfer (SVAT) models for quantifying trace gas exchange between phytosphere and atmosphere. Especially in the context of establishing control strategies based on flux-oriented dose-response relationships, O(3) flux measurements and O(3) exchange simulations are needed for representative ecosystems. During the last decades several micrometeorological methods for quantifying energy and trace gas exchange were developed, as well as models for the simulation of the exchange of trace gases between phytosphere and atmosphere near the ground. This paper is a synthesis of observational and modeling techniques which discusses measurement methods, assumptions, and limitations and current modeling approaches. Because stomatal resistance for trace gas exchange is parameterized as a function of water vapor or carbon dioxide (CO(2)) exchange, the most important micrometeorological techniques especially for quantifying O(3), water vapor and CO(2) flux densities are discussed. A comparison of simulated and measured O(3) flux densities shows good agreement in the mean.  相似文献   

19.
The dry deposition flux of NH3 to coniferous forest was determined by the micrometeorological gradient method using a 36 m high tower. Aerodynamic characteristics of the site were studied, using a second tower erected in the forest 100 m from the first. Fluxes and gradients of heat and momentum measured on both towers indicated a fairly homogeneous turbulent flow field over the studied area of the forest. Site specific flux profile functions for heat were derived from continuous measurements of turbulent fluxes and gradients. These functions were used to derive fluxes from the observed gradients of NH3. In total, eighty 90-min NH3 flux runs were performed. The results indicate a strong nonstomatal uptake of NH3 by the forest. A representative dry deposition velocity for NH3 of 3.6 cm(-1) s was derived. The annual average flux was roughly estimated to be equivalent to 50 kg N ha(-1) yr, significantly higher than the critical load for coniferous forest.  相似文献   

20.
Short-term elevated O3 reduces photosynthesis, which reduces stomatal conductance (g(s)) in response to increased substomatal CO2 concentration (Ci). Further exposure causes stomata to become sluggish in response to environmental stimuli. Exposure to elevated CO2 stimulates rapid stomata closure in response to increased Ci. This reduction in g(s) may not be sustained over time as photosynthesis down-regulates and with it, g(s). The relationship between g(s) and photosynthesis may not be constant because stomata respond more slowly to environmental changes than photosynthesis, and because elevated CO2 may alter guard cell sensitivity to other signals. Also, reduced stomatal density (and g(s)) in response to long-term CO2 enrichment suggests sustained reduction in g(s). Elevated CO2 is believed to ameliorate the deleterious O3 effects by reducing g(s) and thus the potential O3 flux into leaves. Confirmation that g(s) acclimation to CO2 enrichment does not lessen over time is critical for developing meaningful O3 flux scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号