首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is the first report of post-nesting migrations of loggerhead sea turtles (Caretta caretta) nesting in Sarasota County (Florida, USA), their most important rookery in the Gulf of Mexico (GOM). In total, 28 females (curved carapace length CCL between 82.2 and 112.0 cm) were satellite-tracked between May 2005 and December 2007. Post-nesting migrations were completed in 3–68 days (mean ± SD = 23 ± 16 days). Five different migration patterns were observed: six turtles remained in the vicinity of their nesting site while the other individuals moved either to the south-western part of the Florida Shelf (n = 9 turtles), the Northeast GOM (n = 2 turtles), the South GOM (Yucatán Shelf and Campeche Bay, Mexico, and Cuba; n = 5 turtles) or the Bahamas (n = 6 turtles). In average, turtles moved along rather straight routes over the continental shelf but showed more indirect paths in oceanic waters. Path analyses coupled with remote sensing oceanographic data suggest that most of long-distance migrants reached their intended foraging destinations but did not compensate for the deflecting action of ocean currents. While six out of seven small individuals (CCL < 90 cm) remained on the Florida Shelf, larger individuals showed various migration strategies, staying on the Florida Shelf or moving to long-distance foraging grounds. This study highlights the primary importance the Western Florida Shelf in the management of the Florida Nesting Subpopulation, as well as the need of multi-national effort to promote the conservation of the loggerhead turtle in the Western Atlantic. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Sixteen satellite-tagged adult male loggerhead sea turtles (Caretta caretta) dispersed widely from an aggregation near Port Canaveral, Florida, USA (28°23′N, −80°32′W) after breeding. Northbound males migrated further (990 ± 303 km) than southbound males (577 ± 168 km) and transited more rapidly (median initial dive duration = 6 (IQR = 4–16) versus 19 (IQR = 10–31) min, respectively).. Migration occurred along a depth corridor (20–40 m) except where constricted by a narrow continental shelf width. Males foraged in areas 27 ± 41 km2 day−1 at locations <1–80 km from shore for 100.1 ± 60.6 days, with variability in foraging patterns not explained by turtle size or geography. Post-breeding dispersal patterns were similar to patterns reported for adult female loggerhead sea turtles in this region and adult male loggerhead sea turtles elsewhere in the northern hemisphere; however, foraging ground distributions were most similar to adult female loggerhead sea turtles in this region.  相似文献   

3.
Seventeen immature green turtles Chelonia mydas were tracked concurrently by automated ultrasonic receivers at a coral reef off North-Eastern Australia (September–December 2010, 16.4°S, 145.6°E). The majority (n = 11) were tracked for the entire 100-day study, the remainder for 23–85 days. Detection data aggregated at 30-min intervals produced median 6.5–35 daily locations for individual turtles. Home range areas (95 % utilisation distribution) were ≤1 km2, $ {\bar{\text{x}}} $  ± SD = 0.74 km2 ± 0.159. To the best of our knowledge, these are the first home range estimates for C. mydas foraging at offshore tropical reefs. The findings are important for conservation in revealing near-continuous presence of the same individuals within a small geographic area. Time between detections was very short (median <3 min) demonstrating passive ultrasonic technology can track multiple turtles in a foraging environment with higher temporal resolution than typically achieved by satellite tracking.  相似文献   

4.
Satellite transmitters were deployed on ten green turtles (Chelonia mydas) nesting in Rekawa Sanctuary (RS-80.851°E 6.045°N), Sri Lanka, during 2006 and 2007 to determine inter-nesting and migratory behaviours and foraging habitats. Nine turtles subsequently nested at RS and demonstrated two inter-nesting strategies linked to the location of their residence sites. Three turtles used local shallow coastal sites within 60 km of RS during some or all of their inter-nesting periods and then returned to and settled at these sites on completion of their breeding seasons. In contrast, five individuals spent inter-nesting periods proximate to RS and then migrated to and settled at distant (>350 km) shallow coastal residence sites. Another turtle also spent inter-nesting periods proximate to RS and then migrated to a distant oceanic atoll and made forays into oceanic waters for 42 days before transmissions ceased. This behavioural plasticity informs conservation management beyond protection at the nesting beach.  相似文献   

5.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

6.
Satellite telemetry data from 17 juvenile loggerhead turtles (43.5–66.5 cm straight carapace length) were used in conjunction with oceanographic data to analyze the influence of regional and seasonal oceanography on dive behavior in the North Pacific Ocean. Combined dive behavior for all individuals showed that turtles spent more than 80% of their time at depths <5 m, and more than 90% of their time at depths <15 m. Multivariate classifications of dive data revealed four major dive types, three representing deeper, longer dives, and one representing shallower dives shorter in duration. Turtles exhibited variability in these dive types across oceanographic regions, with deeper, longer dives in the Hawaii longline swordfish fishing grounds during the first quarter of the year, as well as in the Kuroshio Extension Bifurcation Region and the region near the Baja California Peninsula, Mexico. Turtles in the Kuroshio Extension Bifurcation Region also exhibited dive variability associated with mesoscale eddy features, with turtles making deeper, longer dives while associated with the strongest total kinetic energy. Turtles in the central North Pacific exhibited seasonality in dive behavior that appeared to reflect synchronous latitudinal movements with the North Pacific Subtropical Front and the associated seasonal, large-scale oceanography. Turtles made deeper, longer dives during the first quarter of the year within this region, the reported time and area where the highest loggerhead bycatch occurs by the longline fishery. These results represent the first comprehensive study of dive data for this species in this region. The increased understanding of juvenile loggerhead dive behavior and the influences of oceanography on dive variability should provide further insight into why interactions with longline fisheries occur and suggest methods for reducing the bycatch of this threatened species.  相似文献   

7.
Aerial surveys were conducted to estimate the abundance and distribution of loggerhead turtles (Caretta caretta) in the Columbretes Islands Marine Reserve and surrounding waters (western Mediterranean). Four surveys were carried out during 2000 and 2001, following the line transect methodology. Loggerheads appeared to be present at high densities in the area throughout the whole year, although density varied between seasons, being more abundant during the spring. Mean density in the study area was 0.322 turtles/km2 (range 0.200–0.516) and the mean abundance was 1,324 turtles (range 825–2,124). The turtles were distributed homogeneously throughout the study area, we found no difference in loggerhead density between the water around the reserve and that in the rest of the study area. Current conservation measures planned by the local authorities, which include increasing the area of the reserve, would be very positive for the conservation of this stock.Communicated by S.A. Poulet, Roscoff  相似文献   

8.
Ten adult male loggerhead sea turtles, captured by trawlers or dip nets, were satellite-tracked from a neritic foraging ground in the Mediterranean in order to investigate adult spatio-temporal distribution and breeding migration. Five individuals migrated to potential breeding sites in Libya and one to Greece. The results complement previous studies and show that: (1) the Tunisian shelf may be more important for turtles from Libyan rookeries than previously thought; (2) male tracks corroborate a conservation hotspot previously identified for juveniles; (3) the north African coast represents a preferred migratory corridor, unless open sea routes are more direct; (4) adult males may exhibit high fidelity to relatively small areas, without evident seasonal differences; (5) adults home ranges were smaller and more neritic than juveniles frequenting the same area; (6) males may frequent multiple courtship areas; (7) the average remigration interval of males frequenting this region is longer than 1 year.  相似文献   

9.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

10.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   

11.
Many animals, including sea turtles, alter their movements and home range in relation to the particular type and quality of the habitat occupied. When sufficient resources are available, individuals may develop affinities to specific areas for activities, such as foraging and (or) resting. In the case of green sea turtles (Chelonia mydas L.), after a number of years in the open ocean, juveniles recruit to shallow-water developmental habitats where they occupy distinct home ranges as they feed and grow to maturity. Our goal was to study the habitat use and home range movements of juvenile green turtles along a shallow, worm-rock reef tract in Palm Beach, Florida. Six turtles, measuring from 27.9 to 48.1 cm in straight carapace length and from 7.2 to 12.6 kg in mass, were tracked via ultrasonic telemetry from August to November 2003. Upon capture, each turtle’s esophagus was flushed via lavage to determine recently ingested foods. In addition, four turtles were recaptured and fitted with a time-depth recorder to study dive patterns. Home range areas measured with 100% minimum convex polygon and 95% fixed kernel estimators varied from 0.69 to 5.05 km2 (mean=2.38±1.78 km2) and 0.73 to 4.89 km2 (mean=2.09±1.80 km2), respectively. Home ranges and core areas of turtles were largely restricted to the reef tract itself, and showed considerable overlap between food and shelter sites. The mean number of dives during daylight hours (0600–1800 hours) was 84±5.0 dives, while the mean during night hours (1800–0600 hours) was 39±3.0 dives. Dives during the day were shallower (mean=3.20±1.26 m) than dives at night (mean=5.59±0.09 m). All six turtles were found to have a mixed diet of similar macroalgae and sponge fragments. Our results reveal that juvenile green turtles occupy stable home ranges along the nearshore worm-rock reefs of Southeast Florida, during the summer and fall. Determining which habitats are used by green turtles will assist conservation managers in their global effort to protect this endangered species.  相似文献   

12.
Diet items and habitat constitute some of the environmental resources that may be used differently by individuals within a population. Long-term fidelity by individuals to particular resources exemplifies individual specialization, a phenomenon that is becoming increasingly recognized across a wide range of species. Less is understood about the consequences of such specialization. Here, we investigate the effects of differential foraging ground use on reproductive output in 183 loggerhead sea turtles (Caretta caretta) nesting at Wassaw Island, Georgia (31.89°N, 80.97°W), between 2004 and 2011 with resulting possible fitness effects. Stable isotope analysis was used to assign the adult female loggerheads to one of three foraging areas in the Northwest Atlantic Ocean. Our data indicate that foraging area preference influences the size, fecundity, and breeding periodicity of adult female loggerhead turtles. We also found that the proportion of turtles originating from each foraging area varied significantly among the years examined. The change in the number of nesting females across the years of the study was not a result of uniform change from all foraging areas. We develop a novel approach to assess differential contributions of various foraging aggregations to changes in abundance of a sea turtle nesting aggregation using stable isotopes. Our approach can provide an improved understanding of the influences on the causes of increasing or decreasing population trends and allow more effective monitoring for these threatened species and other highly migratory species.  相似文献   

13.
The establishment of protected corridors linking the breeding and foraging grounds of many migratory species remains deficient, particularly in the world’s oceans. For example, Australia has recently established a network of Commonwealth Marine Reserves, supplementing existing State reserves, to protect a wide range of resident and migratory marine species; however, the routes used by mobile species to access these sites are often unknown. The flatback marine turtle (Natator depressus) is endemic to the continental shelf of Australia, yet information is not available about how this species uses the marine area. We used a geospatial approach to delineate a coastal corridor from 73 adult female flatback postnesting migratory tracks from four rookeries along the north-west coast of Australia. A core corridor of 1,150 km length and 30,800 km2 area was defined, of which 52 % fell within 11 reserves, leaving 48 % (of equivalent size to several Commonwealth Reserves) of the corridor outside of the reserve network. Despite limited data being available for other marine wildlife in this region, humpback whale migratory tracks overlapped with 96 % of the core corridor, while the tracks of three other species overlapped by 5–10 % (blue whales, olive ridley turtles, whale sharks). The overlap in the distribution ranges of at least 20 other marine vertebrates (dugong, cetaceans, marine turtles, sea snakes, crocodiles, sharks) with the corridor also imply potential use. In conclusion, this study provides valuable information towards proposing new locations requiring protection, as well as identifying high-priority network linkages between existing marine protected areas.  相似文献   

14.
An aerial survey was conducted in early spring 2002 over the continental shelf of the Balearic Archipelago to study the distribution of neritic loggerhead turtles. Furthermore, five juvenile loggerhead turtles [straight carapace length (SCL) range 37.1–48.7 cm], were instrumented with transmitters and monitored during 2003 by satellite tracking to study habitat use over a broader geographical range. The distribution of the turtles over the continental shelf matched habitat availability, as defined by depth. However, those tracked by satellite spent most of the time in the oceanic waters of the Algerian basin and generally avoided continental shelf areas. In these turtles, average speed of travel and mean cosine of turning angle did not significantly differ between habitats, indicating that avoidance of shelf areas is not due to active habitat selection. On average, tracked turtles spent 35.1±19.7% of the time at the surface, although surface time was much greater in the turtle with the shortest carapace length, suggesting that this individual had limited swimming capacity. We conclude that the transition between passive drifting and active habitat selection occurs at an SCL of about 40 cm. The turtles followed tracks that matched prevailing currents, but on some occasions they also swam upstream. Hence, the distribution of late juvenile loggerhead turtles in the southern and central western Mediterranean may reflect a combination of passive drifting and active habitat selection.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

15.
From 1998 to 2008, 68 adult female loggerhead sea turtles (Caretta caretta) were instrumented with platform transmitter terminals at nesting beaches in Georgia, North Carolina (NC) and South Carolina (SC) on the East Coast of the United States of America (30°48′N, 81°28′W to 33°51′N, 77°59′W). The majority of post-nesting loggerheads (N = 42, 62 %) migrated to foraging habitats in the Mid-Atlantic Bight during May–October, with a subsequent migration occurring during November–March to foraging habitats south of Cape Hatteras, NC. Nine (13 %) loggerheads initially foraged in the near-shore, coastal areas of the South Atlantic Bight, but moved to offshore habitats—closer to the Gulf Stream—during November–March, while fourteen (21 %) loggerheads remained in foraging areas along the mid-continental shelf off of the eastern coast of Florida and/or continued southward to Florida Bay and the Bahamas. The present study delineates important, post-nesting foraging habitats and migration corridors where loggerheads may interact with commercial fisheries—providing managers opportunities to develop and implement optimally effective conservation actions for the recovery of this threatened species.  相似文献   

16.
Few long-term mark-recapture tagging datasets exist to estimate population parameters for loggerhead sea turtle (Caretta caretta) recovery units. Using a two-state open robust design model, we analyzed a 20-year (1990–2009) mark-recapture dataset from the Keewaydin Island loggerhead nesting assemblage off the southwest coast of Florida (USA) in the eastern Gulf of Mexico. For this analysis, 2,292 turtle encounters were evaluated, representing 841 individual nesting turtles. Survival was estimated at 0.73 (95 % CI 0.69–0.76). This estimate is comparable with survival estimates elsewhere in the Peninsular Florida subpopulation and is among the lowest estimates for the Northwest Atlantic loggerhead population. We documented no changes in remigration rates or clutch frequency over time. These are the first survival and remigration probabilities estimated for a loggerhead nesting assemblage in the eastern Gulf of Mexico.  相似文献   

17.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

18.
Plasma testosterone levels were evaluated, by validating and using a commercially available testosterone enzyme immunoassay (EIA) as an indicator of the sex of immature loggerhead turtles (Caretta caretta) recovered along the western coast of the central Adriatic Sea between November 2011 and February 2012. Testosterone levels were measured in blood samples collected from 28 immature turtles kept in short-term maintenance at the Fondazione Cetacea Rescue Centre (Italy). Overall, plasma testosterone ranged between 229.3 and 2628.6 pg ml?1, suggesting that the EIA procedure is effective for determining androgen titers in immature loggerhead sea turtles. Analysis of the obtained data indicates an unbiased sex ratio supporting previous studies of juvenile loggerhead turtle sex ratios in the Mediterranean Sea. The present work can be considered a starting point for augmenting knowledge on the dynamics of juvenile loggerhead aggregations increasingly found in the northern-central Adriatic Sea and for promoting local management for conservation actions.  相似文献   

19.
Thirty-four juvenile loggerhead sea turtles captured by trawling from the Charleston, South Carolina (USA), shipping channel (32°42′N; −79°47′W) between May 2004 and August 2007 were tagged with satellite transmitters to assess the extent to which they remained near the capture location given their collection along a seasonal migratory corridor. Seventy-five percent of juveniles were classified as seasonal residents. Migrants predominantly swam north in the spring and nomads wandered south in the summer, but predictive indicators for non-resident status were not identified. All but one juvenile generally remained south of 34°N, within 40 km of shore, and in waters <30 m deep throughout the year. Nine of 14 loggerhead sea turtles monitored during the winter remained exclusively over the continental shelf, three briefly occurred in oceanic habitats, and two foraged extensively in oceanic habitats. Residents distributed >15 km from shore between spring and autumn were three times as likely to occur in oceanic habitats in winter. Modest seasonal movements contrasted with adults tagged at similar latitudes and with juveniles tagged further north and suggest distinct foraging groups within a regional foraging ground.  相似文献   

20.
To study habitat use by loggerhead sea turtles in the Algerian Basin (western Mediterranean), ten juveniles (straight carapace length range: 39.0–63.3 cm) were tracked by satellite from March 2004 to September 2005. Swimming behaviour (characterized by speed of travel, time spent at the surface, and the cosine of turning angles) varied individually, but these differences were unrelated to body size. Despite individual differences in swimming behaviour, the ten immature loggerhead sea turtles spent most of their time in the oceanic waters of the Algerian Basin, although simulations indicated that the average tracking time (235.7 ± 98.7 SD days) was sufficiently long for them to leave the Algerian Basin and disperse through most of the Mediterranean. Furthermore, none of the ten turtles swam in any preferred direction, and their bearings were all randomly distributed. Finally, all them consistently avoided the continental shelf and did not migrate seasonally, as the average latitude, the average longitude, and the average distance of the population to the release point did not change seasonally. Seasonality also had only a weak influence in swimming behaviour, as the time spent at the surface during light hours was the only parameter that changed seasonally. We conclude that immature loggerhead sea turtles in the south of the western Mediterranean exhibit a strong fidelity to the Algerian Basin, where distribution is ruled mainly by the bathymetry, without any influence of seasonality. That fidelity to the Algerian Basin matches predictions based on genetic structuring and might result from a combination of factors: surface circulation patterns and habitat selection by the loggerhead sea turtles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号