首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loggerhead turtles nesting in the Mediterranean Sea exhibit remarkable genetic structuring. This paper tests the hypothesis that young loggerhead turtles from different rookeries do not distribute homogeneously among the major Mediterranean foraging grounds, due to a complex pattern of surface currents. We extracted long fragments of mitochondrial DNA from 275 stranded or bycaught juvenile turtles from six foraging grounds (Catalano-Balearic Sea, Algerian basin, Tyrrhenian Sea, Adriatic Sea, northern Ionian Sea and southern Levantine Sea). We used a Bayesian mixed-stock analysis to estimate the contributions from rookeries in the Mediterranean, the North-west Atlantic and Cape Verde to the studied foraging grounds. Differences were found in the relative contribution of juvenile turtles of Atlantic and Mediterranean origin to each foraging ground. A decreasing proportion of Atlantic juveniles was detected along the main surface current entering the Mediterranean, with a high prevalence of turtles from eastern Florida in the Algerian basin and lower numbers elsewhere. In regard to the turtles of Mediterranean origin, juveniles from Libya prevailed in central and western Mediterranean foraging grounds other than the Algerian basin. Conversely, the Adriatic Sea was characterised by a large presence of individuals from western Greece, while the southern Levantine Sea was inhabited by a heterogeneous mix of turtles from the eastern Mediterranean rookeries (Turkey, Lebanon and Israel). Overall, the distribution of juveniles may be related to surface circulation patterns in the Mediterranean and suggests that fisheries might have differential effects on each population depending on the overlap degree between foraging and fishing grounds.  相似文献   

2.
Sea turtle populations worldwide suffer from reduced survival of immatures and adults due to fishery bycatch. Unfortunately, information about the whereabouts of turtles outside the breeding habitat is scarce in most areas, hampering the development of spatially explicit conservation plans. In the Mediterranean, recoveries of adult females flipper-tagged on nesting beaches suggest that the Adriatic Sea and Gulf of Gabès are important foraging areas for adults, but such information could be heavily biased (observing and reporting bias). In order to obtain unbiased data, we satellite-tracked seven loggerhead sea turtles after they completed nesting in the largest known Mediterranean rookery (Bay of Laganas, Zakynthos, Greece). Three females settled in the north Adriatic Sea, one in the south Adriatic Sea and two in the Gulf of Gabès area at the completion of their post-nesting migrations (one individual did not occupy a distinct foraging area). The concordance of tracking results with information from recoveries of flipper-tagged turtles suggests that the north Adriatic Sea and the Gulf of Gabès represent key areas for female adult Mediterranean loggerhead sea turtles.  相似文献   

3.
Much is still to be learned about the spatial ecology of foraging marine turtles, especially for juveniles and adult males which have received comparatively little attention. Additionally, there is a paucity of ecological information on growth rates, size and age at maturity, and sex ratios at different life stages; data vital for successful population modelling. Here, we present results of a long-term (2002–2011) study on the movements, residency, growth and sex ratio of loggerhead turtles (Caretta caretta) in Amvrakikos Gulf (39°0′N 21°0′E), Greece, using satellite telemetry (N = 8) and ongoing capture–mark–recapture (CMR; N = 300 individuals). Individuals encountered at sea ranged from large juvenile to adult (46.2–91.5 cm straight carapace length) and demonstrated growth rates within published norms (<2.7 cm yr?1) that slowed with increasing body size. We revealed that an unexpectedly high proportion of animals were male (>44 % of captures above 65 cm straight carapace length), compared to region-wide female-biased hatchling production, indicating sex-biased survival or possible behavioural drivers for likelihood of capture in the region. Satellite tracking confirmed that some turtles establish discrete, protracted periods of residency spanning more than 1 year, whilst others migrated away from the site. These findings are underlined by CMR results with individual capture histories spanning up to 7 years, and only 18 % of individuals being recaptured.  相似文献   

4.
Sex ratios are a crucial parameter for evaluating population viability. In species with complex life history patterns and temperature sex determination mechanisms, such as the loggerhead turtle (Caretta caretta), sex ratios may vary within a population and among populations. In the Mediterranean, juvenile sex ratios appear to not differ significantly from 1:1, although estimates for hatchling sex ratios are highly female biased. The immigration of males from the Atlantic has been suggested as a possible cause of such variation. Here, we present results of a multi-year investigation (2000–2011) on the sex ratios of loggerhead turtles foraging along the south Tyrrhenian coast, Western Mediterranean, with the aim of providing a better understanding of the potentially underlying forces that drive regional and age-dependent differences in sex ratios. Sex was determined through visual examination of the gonads in 271 dead turtles (curved carapace length range 29.5–89 cm). A fragment of the mitochondrial DNA control region was sequenced from 61 specimens to characterise the demographic composition of this foraging assemblage by applying a many-to-many mixed stock analysis approach. No significant association was found between sex ratios and years or size classes, although the largest size was male biased. Juvenile sex ratio was 1.56:1, which was different from an even sex ratio but still less female biased than hatchling sex ratios from Mediterranean beaches. Results of the mixed stock analysis indicate that juvenile sex ratios in the Mediterranean are largely unaffected by immigration of Atlantic individuals into the basin, as previously suggested. Continued long-term monitoring of juvenile sex ratios is necessary to detect biologically significant sex ratio shifts in the Mediterranean loggerhead turtle population.  相似文献   

5.
We used satellite telemetry to study behavior at foraging sites of 40 adult female loggerhead sea turtles (Caretta caretta) from three Florida (USA) rookeries. Foraging sites were located in four countries (USA, Mexico, the Bahamas, and Cuba). We were able to determine home range for 32 of the loggerheads. One turtle moved through several temporary residence areas, but the rest had a primary residence area in which they spent all or most of their time (usually >11 months per year). Twenty-four had a primary residence area that was <500 km2 (mean = 191). Seven had a primary residence area that was ≥500 km2 (range = 573–1,907). Primary residence areas were mostly restricted to depths <100 m. Loggerheads appeared to favor areas with larger-grained sediment (gravel and rock) over areas with smaller-grained sediment (mud). Short-term departures from primary residence areas were either looping excursions, typically involving 1–2 weeks of continuous travel, or movement to a secondary residence area where turtles spent 25–45 days before returning to their primary residence area. Ten turtles had a secondary residence area, and six used it as an overwintering site. For those six turtles, the primary residence area was in shallow water (<17 m) in the northern half of the Gulf of Mexico (GOM), and overwintering sites were farther offshore or farther south. We documented long winter dive times (>4 h) for the first time in the GOM. Characterizing behaviors at foraging sites helps inform and assess loggerhead recovery efforts.  相似文献   

6.
7.
We estimated for the first time the growth rates of loggerhead sea turtles of Mediterranean and of Atlantic origin found in the Mediterranean Sea, combining both skeletochronological and genetic analyses. Our growth models suggested that the growth rate of loggerhead sea turtles of Mediterranean origin was faster than that of their conspecifics with an Atlantic origin exploiting the feeding grounds in the Mediterranean Sea. The age at maturity for Mediterranean origin loggerhead sea turtles, estimated using our best fitting model, was 24 years, which suggests that loggerhead sea turtles nesting in the Mediterranean are not only smaller than those nesting in the western North Atlantic but also younger.  相似文献   

8.
The analysis of mitochondrial DNA in loggerhead sea turtles (Caretta caretta) from eight foraging grounds in the Mediterranean and the adjoining Atlantic revealed deep genetic structuring within the western Mediterranean. As a consequence, the foraging grounds off the North-African coast and the Gimnesies Islands are shown to be inhabited mainly by turtles of the Atlantic stocks, whereas the foraging grounds off the European shore of the western Mediterranean are shown to be inhabited mainly by turtles from the eastern Mediterranean rookeries. This structuring is explained by the pattern of sea surface currents and water masses and suggests that immature loggerhead sea turtles entering the western Mediterranean from the Atlantic and the eastern Mediterranean remain linked to particular water masses, with a limited exchange of turtles between water masses. As the north of the western Mediterranean comprises mostly individuals from the highly endangered eastern Mediterranean rookeries, conservation plans should make it a priority to reduce the mortality caused by incidental by-catch in these areas.  相似文献   

9.
Few long-term mark-recapture tagging datasets exist to estimate population parameters for loggerhead sea turtle (Caretta caretta) recovery units. Using a two-state open robust design model, we analyzed a 20-year (1990–2009) mark-recapture dataset from the Keewaydin Island loggerhead nesting assemblage off the southwest coast of Florida (USA) in the eastern Gulf of Mexico. For this analysis, 2,292 turtle encounters were evaluated, representing 841 individual nesting turtles. Survival was estimated at 0.73 (95 % CI 0.69–0.76). This estimate is comparable with survival estimates elsewhere in the Peninsular Florida subpopulation and is among the lowest estimates for the Northwest Atlantic loggerhead population. We documented no changes in remigration rates or clutch frequency over time. These are the first survival and remigration probabilities estimated for a loggerhead nesting assemblage in the eastern Gulf of Mexico.  相似文献   

10.
Previous studies of loggerhead sea turtles have concluded that drifting longlines were the main threat for immature specimens in the western Mediterranean, because immature loggerhead sea turtles mainly inhabit oceanic waters. However, recent aerial surveys have revealed large numbers of immature loggerhead sea turtles over the continental shelf of eastern mainland Spain, where turtles are exposed to neritic fishing gears but not to drifting longlines. We satellite-tracked seven loggerhead sea turtles (minimum straight carapace length (SCLmin) range: 36.5–55.0 cm) to assess whether the turtles in this region are vagrants from the adjoining oceanic regions or whether these loggerheads mostly inhabit the continental shelf. Satellite-tracking revealed that six of the tagged turtles avoided the oceanic realm and made extended use of the continental shelf, whereas only one individual could be considered a true vagrant as it avoided the continental shelf and primarily used the oceanic habitat. These results are in sharp contrast with those previously reported for immature loggerhead sea turtles of similar size from the south-western Mediterranean and fit well a relaxed ontogenic model that was recently proposed for loggerhead sea turtles in the central Mediterranean. Furthermore, these results demonstrate the vulnerability of loggerhead sea turtles of eastern mainland Spain to neritic fishing gears, as three of the seven turtles died and one was bycaught incidentally while being tracked over the continental shelf.  相似文献   

11.
The Hawaiian hawksbill population has fewer than 20 females nesting per year; hence, there is a need to monitor this population closely and basic biological information on individual growth and age to maturity is critical. We present a skeletochronology analysis of Hawaiian hawksbills using humeri recovered from 30 dead stranded hawksbills, plus 10 dead hatchlings. Growth mark morphology shows readily distinguishable marks similar in appearance to other species, though some animals displayed more diffuse marks. Growth rates remained high (average 2.24–4.77 cm year?1) from 20 to 80 cm straight carapace length (SCL). Hawksbills larger than 80 cm SCL had average growth rates of 0.3 cm year?1. There were few adult turtles in the sample; however, results indicate hawksbills have faster growth rates than loggerhead or green turtles, with probable average age to maturity (at size 78.6 cm SCL) occurring between 17 and 22 years.  相似文献   

12.
Skeletochronological analysis of Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtle humeri and scleral ossicles was conducted to (1) describe the characteristics of scleral ossicles in these species, (2) determine whether the scleral ossicles contain annually deposited skeletal growth marks and (3) evaluate the potential for skeletochronological analysis of ossicles to obtain age data for size classes and species of sea turtles whose humeri exhibit prohibitive amounts of growth mark resorption. Humeri, entire eyes, and/or individual scleral ossicles were collected from stranded, dead sea turtles that were found along the coasts of Florida, North Carolina, Virginia, and Texas, USA. Samples were taken from a total of 77 neritic, juvenile Kemp’s ridleys ranging from 21.1 to 56.8 cm straightline carapace length (SCL), as well as two Kemp’s ridley hatchlings. For loggerheads, samples were obtained from 65 neritic juvenile and adult turtles ranging from 44.7 to 103.6 cm SCL and ten hatchlings. Examination of the ossicles revealed the presence of marks similar in appearance to those found in humeri. The number of marks in the ossicles and humeri of individual juvenile Kemp’s ridleys for which both structures were collected (n = 55) was equivalent, strongly indicating that the marks are annual. However, in large juvenile and adult loggerhead turtles (n = 65), some significant resorption of early growth marks was observed, suggesting that although ossicles might be useful for skeletochronological analysis of small juveniles, they may not provide a reasonable alternative to humeri for obtaining age estimates for older loggerhead sea turtles.  相似文献   

13.
Studies that incorporate information from habitat-specific ecological interactions (e.g., epibiotic associations) can reveal valuable insights into the cryptic habitat-use patterns and behavior of marine vertebrates. Sea turtles, like other large, highly mobile marine vertebrates, are inherently difficult to study, and such information can inform the implementation of conservation measures. The presence of epipelagic epibionts, such as the flotsam crab Planes major, on sea turtles strongly suggests that neritic turtles have recently occupied epipelagic habitats (upper 200 m in areas with >200 m depth) and that epipelagic turtles spend time at or near the surface. We quantified the effects of turtle species, turtle size, and habitat (neritic or epipelagic) on the frequency of epibiosis (F 0) by P. major on sea turtles in the Pacific Ocean. In neritic habitats, we found that loggerhead (F 0 = 27.6 %) and olive ridley turtles (F 0 = 26.2 %) host crabs frequently across a wide range of body sizes, and green turtles almost never host crabs (F 0 = 0.7 %). These results suggest that loggerheads and olive ridleys display variable/flexible epipelagic-neritic transitions, while green turtles tend to transition unidirectionally at small body sizes. In epipelagic habitats, we found that loggerheads host crabs (F 0 = 92.9 %) more frequently than olive ridleys (F 0 = 50 %) and green turtles (F 0 = 38.5 %). These results suggest that epipelagic loggerheads tend to spend more time at or near the surface than epipelagic olive ridleys and green turtles. Results of this study reveal new insights into habitat-use patterns and behavior of sea turtles and display how epibiont data can supplement data from more advanced technologies to gain a better understanding of the ecology of marine vertebrates during cryptic life stages.  相似文献   

14.
Satellite telemetry data from 17 juvenile loggerhead turtles (43.5–66.5 cm straight carapace length) were used in conjunction with oceanographic data to analyze the influence of regional and seasonal oceanography on dive behavior in the North Pacific Ocean. Combined dive behavior for all individuals showed that turtles spent more than 80% of their time at depths <5 m, and more than 90% of their time at depths <15 m. Multivariate classifications of dive data revealed four major dive types, three representing deeper, longer dives, and one representing shallower dives shorter in duration. Turtles exhibited variability in these dive types across oceanographic regions, with deeper, longer dives in the Hawaii longline swordfish fishing grounds during the first quarter of the year, as well as in the Kuroshio Extension Bifurcation Region and the region near the Baja California Peninsula, Mexico. Turtles in the Kuroshio Extension Bifurcation Region also exhibited dive variability associated with mesoscale eddy features, with turtles making deeper, longer dives while associated with the strongest total kinetic energy. Turtles in the central North Pacific exhibited seasonality in dive behavior that appeared to reflect synchronous latitudinal movements with the North Pacific Subtropical Front and the associated seasonal, large-scale oceanography. Turtles made deeper, longer dives during the first quarter of the year within this region, the reported time and area where the highest loggerhead bycatch occurs by the longline fishery. These results represent the first comprehensive study of dive data for this species in this region. The increased understanding of juvenile loggerhead dive behavior and the influences of oceanography on dive variability should provide further insight into why interactions with longline fisheries occur and suggest methods for reducing the bycatch of this threatened species.  相似文献   

15.
M. Heithaus  A. Frid  L. Dill 《Marine Biology》2002,140(2):229-236
Interactions between large marine predators and their prey are difficult to observe and little is known about the risk of predation faced by sea turtles. The frequency of predator-inflicted injuries, however, has afforded insights into the predation risk faced by many taxa. We measured the frequency of shark-inflicted injuries on green (Chelonia mydas) and loggerhead (Caretta caretta) sea turtles in Shark Bay, Western Australia with a view to determining differences between species and sex-classes in the risk of predation from tiger sharks (Galeocerdo cuvier). Furthermore, we investigated how escape ability and habitat use might influence the probability of turtles being injured by sharks. Shark-inflicted injuries were more frequent on loggerhead than on green turtles, and most frequent on adult male loggerhead turtles. Species effects could not be attributed to differences in habitat use, since green turtles were found in habitats favored by tiger sharks more often than were loggerhead turtles. Green turtles, however, were faster and maneuvered better than loggerhead turtles, suggesting that escape ability is a factor in interspecific differences in injury frequency. The sex-class difference in injury frequency of loggerhead turtles suggests that males face greater predation risk than females and may take more risks. For green turtles, the lack of a sex difference in injury frequency might be due to greater escape ability lowering overall predation risk or to no differences between sexes in the benefits of risk-taking.  相似文献   

16.
Knowledge about migratory routes and highly frequented areas is a priority for sea turtle conservation, but the movement patterns of juveniles frequenting the Adriatic have not been investigated yet, although juveniles represent the bulk of populations. We tracked by satellite six juvenile and one adult female loggerhead from the north Adriatic. The results indicated that loggerhead juveniles (1) can either show a residential behaviour remaining in the Adriatic throughout the year or perform seasonal migrations to other areas, (2) can remain even in the coldest, northernmost area during winter, (3) can frequent relatively small foraging areas, (4) mostly frequent the eastern part of the Adriatic, and (5) follow preferred migratory routes along the western and eastern Adriatic coasts. The movements of the adult turtle also revealed (6) a behavioural polymorphism in Mediterranean adults, which included a lack of area fidelity and connection between distant neritic foraging grounds.  相似文献   

17.
To study habitat use by loggerhead sea turtles in the Algerian Basin (western Mediterranean), ten juveniles (straight carapace length range: 39.0–63.3 cm) were tracked by satellite from March 2004 to September 2005. Swimming behaviour (characterized by speed of travel, time spent at the surface, and the cosine of turning angles) varied individually, but these differences were unrelated to body size. Despite individual differences in swimming behaviour, the ten immature loggerhead sea turtles spent most of their time in the oceanic waters of the Algerian Basin, although simulations indicated that the average tracking time (235.7 ± 98.7 SD days) was sufficiently long for them to leave the Algerian Basin and disperse through most of the Mediterranean. Furthermore, none of the ten turtles swam in any preferred direction, and their bearings were all randomly distributed. Finally, all them consistently avoided the continental shelf and did not migrate seasonally, as the average latitude, the average longitude, and the average distance of the population to the release point did not change seasonally. Seasonality also had only a weak influence in swimming behaviour, as the time spent at the surface during light hours was the only parameter that changed seasonally. We conclude that immature loggerhead sea turtles in the south of the western Mediterranean exhibit a strong fidelity to the Algerian Basin, where distribution is ruled mainly by the bathymetry, without any influence of seasonality. That fidelity to the Algerian Basin matches predictions based on genetic structuring and might result from a combination of factors: surface circulation patterns and habitat selection by the loggerhead sea turtles.  相似文献   

18.
Seventeen immature green turtles Chelonia mydas were tracked concurrently by automated ultrasonic receivers at a coral reef off North-Eastern Australia (September–December 2010, 16.4°S, 145.6°E). The majority (n = 11) were tracked for the entire 100-day study, the remainder for 23–85 days. Detection data aggregated at 30-min intervals produced median 6.5–35 daily locations for individual turtles. Home range areas (95 % utilisation distribution) were ≤1 km2, $ {\bar{\text{x}}} $  ± SD = 0.74 km2 ± 0.159. To the best of our knowledge, these are the first home range estimates for C. mydas foraging at offshore tropical reefs. The findings are important for conservation in revealing near-continuous presence of the same individuals within a small geographic area. Time between detections was very short (median <3 min) demonstrating passive ultrasonic technology can track multiple turtles in a foraging environment with higher temporal resolution than typically achieved by satellite tracking.  相似文献   

19.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

20.
Few data are available on the movements and behavior of immature Atlantic loggerhead sea turtles (Caretta caretta) from their seasonal neritic foraging grounds within the western north Atlantic. These waters provide developmental habitat for loggerheads originating from several western Atlantic nesting stocks. We examined the long-term movements of 23 immature loggerheads (16 wild-caught and seven headstart turtles) characterizing their seasonal distribution, habitat use, site fidelity, and the oceanographic conditions encountered during their migrations. We identified two movement strategies: (1) a seasonal shelf-constrained north–south migratory pattern; and (2) a year-round oceanic dispersal strategy where turtles travel in the Gulf Stream to the North Atlantic and their northern dispersal is limited by the 10–15°C isotherm. When sea surface temperatures dropped below 20°C, neritic turtles began a migration south of Cape Hatteras, North Carolina (USA) where they established fidelity to the waters between North Carolina’s Outer Banks and the western edge of the Gulf Stream along outer continental shelf. Two turtles traveled as far south as Florida. Several turtles returned to their seasonal foraging grounds during subsequent summers. Northern movements were associated with both increased sea surface temperature (>21°C) and increased primary productivity. Our results indicate strong seasonal and interannual philopatry to the waters of Virginia (summer foraging habitat) and North Carolina (winter habitat). We suggest that the waters of Virginia and North Carolina provide important seasonal habitat and serve as a seasonal migratory pathway for immature loggerhead sea turtles. North Carolina’s Cape Hatteras acts as a seasonal “migratory bottleneck” for this species; special management consideration should be given to this region. Six turtles spent time farther from the continental shelf. Three entered the Gulf Stream near Cape Hatteras, traveling in the current to the northwest Atlantic. Two of these turtles remained within an oceanic habitat from 1 to 3 years and were associated with mesoscale features and frontal systems. The ability of large benthic subadults to resume an oceanic lifestyle for extended periods indicates plasticity in habitat use and migratory strategies. Therefore, traditional life history models for loggerhead sea turtles should be reevaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号