首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
水雾抑制气体爆炸火焰传播的实验研究   总被引:13,自引:3,他引:13  
利用自行设计的全程透明的火焰加速管系统和细水雾实验系统 ,对不同水雾条件下的气体火焰传播现象进行了实验研究。运用光电传感器与CCD摄像技术 ,笔者分析了不同水雾条件下的甲烷预混气体火焰传播速度、传播火焰阵面轨迹 ;探讨了水雾抑制气体火焰传播的机理及条件。实验发现了在一定条件水雾作用下的气体传播火焰阵面拉伸与火焰驻留的现象与条件 ,实验结果表明 :水雾对气体爆炸火焰传播的抑制是由于水雾作用于火焰阵面反应区 ,降低了反应区内火焰温度和气体燃烧速度 ,减缓了火焰阵面传热与传质的进行 ,从而使传播火焰得以抑制 ;而水雾对气体爆炸火焰传播的抑制效果与水雾通量、雾区浓度、水雾区长度以及火焰到达水雾区的火焰传播速度有关  相似文献   

2.
水雾对气体火焰传播特性影响的实验研究   总被引:4,自引:0,他引:4  
本文利用自行设计的传播火焰喷雾抑制实验系统研究了水雾对甲烷火焰传播特性的影响.结果表明,在一定范围内水雾对甲烷火焰传播的抑制效率随着水流量和火焰前方流场中水雾区流体速度的增加而增加.在甲烷爆炸反应过程中,水作为第三体或惰性液滴破坏其中的链载体,从而降低了甲烷爆炸的反应能力.  相似文献   

3.
为研究惰性气体抑制瓦斯爆燃火焰传播特性,在自行搭建的中尺度爆炸激波管道上,采用数据采集系统、压电式传感器、火焰传感器、同步控制系统和激光纹影测试系统,通过对比4种不同喷射压力(0.5,1.5,2.5,3.5 MPa)的实验工况,选用N2做为惰性介质时抑制火焰的传播特性与喷射压力密切相关,火焰传播速度随着喷射压力增加呈现先增加后减弱的趋势。研究结果表明:少量N2在管道中扩散,加剧了未反应预混气体的扰动状态,造成火焰阵面褶皱的卷吸能力增强,进而加速化学反应进程,促进预混气体燃烧;喷射压力为1.5 MPa时,火焰阵面拉升、变形最强,火焰传播速度提高,最高可达到250 m/s;喷射压力为3.5 MPa时,火焰阵面出现明显三维凹陷结构,运动发生明显滞后现象,火焰传播速度大幅度降低至5.4 m/s,惰性气体抑制火焰传播效果明显。  相似文献   

4.
瓦斯爆炸过程中火焰传播的实验与数值模拟研究   总被引:1,自引:0,他引:1  
为了研究矿井瓦斯爆炸火焰发展过程中结构与参数的动态变化特征,建立小尺寸管道气体爆炸实验平台,结合高速纹影摄影技术,探测了不同浓度的甲烷-空气预混气体火焰在管道内传播的结构变化特性,并得出速度变化特征曲线。同时建立相应的数学模型和物理模型,通过模拟实验研究管道内气体爆炸反应过程中火焰传播速度变化过程,计算图像和实验图像走向趋向一致。  相似文献   

5.
为了研究半密闭空间内部油气着火爆炸初期火焰特性,进行了不同油气体积分数下的油气着火爆炸实验,通过高速摄影等技术手段对爆炸过程中火焰形态进行了捕捉,分析了不同油气体积分数下爆炸初期火焰着火模式、火焰形态、传播过程和火焰浮力稳定性的变化规律。结果表明:油气体积分数为决定容器内部着火模式的关键因素,随着油气体积分数的逐渐增大,着火模式呈现出燃烧-爆炸-爆燃后持续燃烧的转变;爆炸下的火焰具有明显的分区现象,而其他的着火模式则没有;随着油气体积分数的增加,越靠近化学当量比,纵向和横向火焰阵面速度越大;油气体积分数小于等于1.1%或大于等于2.6%时,火焰稳定性受浮力影响显著。  相似文献   

6.
为研究管道结构对氢-空预混气体爆炸特性影响,采用实验与数值模拟相结合的方法,分析不同管道结构内氢-空预混气体燃爆时火焰传播进程、爆炸压力、湍流动能变化及流场分布。结果表明:90°弯管对氢-空预混气体爆炸强度增强作用明显高于T型分岔管和直管。火焰阵面在结构突变处褶皱变形较明显,并出现大尺度强湍流和涡团,气团脉动速度与湍流燃烧速率不断增大,氢-空预混气体质量扩散速率与热量扩散速率增大,湍流动能呈迅速上升趋势。  相似文献   

7.
为了研究网状金属材料对火焰波的阻隔作用,设计了可架设阻隔材料的气体爆炸箱,借助高速摄像机及ProAnalyst软件,测定了不同点火位置、不同网状金属材料条件下的气体爆炸后火焰波运动状态,进而分析了网状金属材料在该条件下对火焰波的阻隔作用。实验表明:在无阻隔物时,气体爆炸后的火焰波以球形向四周传播,其速度趋势呈抛物线形变化,存在一个速度的峰值;设置阻隔物后,火焰波遇阻隔物发生形变,垂直于阻隔物方向速度峰值降低,但同时水平方向传播速度加快,阻隔物距离点火源越近,这些现象越明显;在相同点火距离下,对于不同金属的阻隔物,火焰波垂直方向传播速度及其峰值以及到达峰值的时间与材料的导热系数具有负相关性。可见,从位置上看,阻隔物靠近点火源,可以有效阻隔垂直火焰波;从材料上看,选择导热系数大的金属阻隔材料,不但可以有效阻隔垂直火焰波,还可以使阻隔作用提前,起到双重的阻隔效果。  相似文献   

8.
为研究高海拔矿井瓦斯爆炸火焰传播规律,运用数值模拟方法,建立矿井掘进巷道瓦斯气体爆炸数学及物理模型,并对海拔高度为0,1 000,2 000,3 000,4 000 m时的爆炸火焰传播速度、温度和冲击波压力进行研究。结果表明:瓦斯浓度和聚集体积量一定的掘进巷道发生瓦斯爆炸时,随着海拔高度的升高,火焰传播速度增大,且海拔每升高1 000 m,瓦斯气体聚集区和非聚集区的平均火焰传播速度分别增大4.7%和1.9%,掘进巷道内同一位置受到的瓦斯爆炸火焰最高冲击波压力随着海拔高度增加而显著降低,且呈二次函数关系,达到最大冲击波压力和最高火焰温度的时间缩短,最高爆炸火焰温度受海拔高度的影响较小。  相似文献   

9.
为研究连通容器内气体爆炸规律,采用Fluent(经典流体动力学软件)对柱形连通容器内预混气体爆炸过程进行模拟,模拟了不同点火位置和火焰传播方向条件下连通容器内火焰传播过程和压力变化,并分析了连通容器内不同时刻的速度场.结果表明:火焰面在传播过程中并非完全对称,当火焰到达传爆容器后,湍流燃烧剧烈,火焰不规则变形显著;端面点火后在传爆容器内产生的压力峰值和压力波动比中心点火时更大;当起爆容器为大容器时,传爆容器内气体预压缩程度更大,压力峰值更高.  相似文献   

10.
氢气对预混甲烷/空气燃爆过程的影响   总被引:1,自引:0,他引:1  
为研究氢气的加入对不同体积分数甲烷/空气预混爆炸过程影响的规律,在尺寸为150 mm×150 mm×1 000 mm的管道中通入体积分数为8%、9.5%和11.5%的甲烷/空气预混气体,然后加入一定体积分数的氢气。氢气所占体积分数分别为0、0.74%、1.48%、2.95%、4.40%。分别对加入不同体积分数的甲烷爆炸过程中爆炸压力、火焰图像和爆炸温度进行测量、分析。结果表明:只有在8%纯甲烷爆炸时能够形成完整的郁金香火焰。8%和9.5%甲烷体积分数试验中,氢气的加入使火焰面由上下对称变得不对称,火焰阵面上移,火焰速度加快;爆炸中的最大超压增大并且最大超压时刻点提前。在11.5%的甲烷加氢试验中,随加氢量增加,爆炸压力、温度、火焰速度分别略微降低。这表明氢气的加入在体积分数为8%的爆炸反应中较大地促进了反应,而体积分数为11.5%时加氢后爆炸反应减弱。通过理论分析计算了半封闭管道中体积分数为9.5%甲烷爆炸温度和实测温度之间的差异。爆炸压力和温度的变化能很好地反映加入氢气对甲烷爆炸的影响。  相似文献   

11.
为研究不同封闭情况下T型管道中瓦斯爆炸的传播规律,在90°分岔管道中进行瓦斯爆炸实验,管道封闭情况为弱封闭(双PVC薄膜弱封闭)和强封闭(直管封闭或支管封闭)。实验结果表明:在瓦斯浓度为9.5%时,管道中各点处的瓦斯爆炸压力、火焰传播速度和火焰锋面振荡幅度最大,11%次之,8%最小。T型管道中,弱封闭端瓦斯爆炸压力不断减小;火焰传播速度先缓慢增大后减小,随后又快速增大。强封闭端,瓦斯爆炸压力增大;火焰传播速度先缓慢增大后略微下降,随后快速增大后又大幅度下降,甚至出现火焰锋面振荡现象。不同封闭管道中各测点的瓦斯最大爆炸压力和火焰传播速度大小比较可知,直管封闭管道>双PVC薄膜弱封闭管道>支管封闭管道。  相似文献   

12.
The propagation and acceleration of a flame surface past obstructions in a closed square channel was investigated using large eddy simulation. The dynamic Smagorinsky–Lilly subgrid model and the Boger flame surface density combustion model were used. The geometry is essentially two-dimensional with fence-type obstacles distributed on the top and bottom surfaces, equally spaced along the channel length at the channel height. Flame propagation, however, is three dimensional as ignition occurs at a point at the center of the channel cross-section. The effect of obstacle blockage ratio on the development of the flame structure was investigated by varying the obstacle height. Three-dimensional cases were simulated from the initiation of a combustion kernel through spark ignition to the acceleration of the flame front at speeds up to 80 m/s. The transition from laminar flame propagation to turbulent flame propagation within the “thin reaction zone” regime was observed in the simulations. By analyzing the development of the three dimensional flame surface and unburned gas flow field, the formation of several flame structures observed experimentally are explained. Global quantities such as the total flame area and centerline flame velocity were ascertained and compared to the experimental data. High amplitude oscillations in the centerline flame velocity were found to occur from a combination of the unburned gas flow field and fluctuations in the volumetric burning rate.  相似文献   

13.
为了研究分岔管道不同封闭状态下瓦斯爆燃火焰阵面传播规律,在自制的T型透明分岔管道内,设置支管端口完全封闭、直管左端口弱封闭,采用光电传感器和压力传感器测试了直管右端弱封闭、完全封闭2种情况下,预混甲烷-空气可燃气体爆燃火焰传播过程中速度、超压参数的变化情况。结果表明:由于分岔的存在,2种封闭状态在支管端点火后瓦斯爆燃火焰阵面在支管中的传播速度均先增大后减小;直管右端弱封闭时,经过分岔后火焰加速向直管两端传播速度基本一致,分别达到86.29 m/s和88.07 m/s;直管右端完全封闭时,火焰向弱封闭端传播速度增大至166.67 m/s,火焰向完全封闭端传播时并不断压缩未燃气体产生高压振荡反馈导致火焰振荡传播现象,火焰速度不断减小至4.84 m/s;管道内瓦斯爆燃超压均迅速上升到达峰值,之后受压缩气体的膨胀和冲击后爆燃产物的振荡作用迅速下降。  相似文献   

14.
Accidental releases of toxic gases in partially confined spaces, like a storage shed, can sometimes be controlled by water sprays. This paper presents the results of experimental field tests during which various water sprays were used to mitigate chlorine gaseous releases. The releases (source strength: 1–4 kg/min) simulated a loss of containment occurring at an industrial chlorine storage installation (5 m3). The mitigation performances of different water sprays were investigated for diverse configurations, and under various atmospheric conditions. The best chlorine concentration reduction was achieved close to the source by a mobile upward water spray, with a maximum concentration reduction of a factor 10 at a distance of 5 m downstream from the source, and for a release flow rate of about 2 kg/min. The good performances of a fixed downward flat fan water spray were also pointed out (mean concentration reduction of a factor 2–5 for the whole series of experiments carried out), with an optimum of effectiveness at a distance of 10 m downstream from the source. In low wind speed conditions (U10<1 m/s), the downward flat fan water spray was more effective for weak release flow rates. The mitigation effectiveness by absorption remained slight (<3%).  相似文献   

15.
为探索铝粉尘云燃烧火焰形态和灾变演化,基于改造的竖直开口实验管道,借助高速摄像仪和离子探针,研究火焰结构及变化,分析粒径因素对铝粉火焰前锋形态的影响。实验结果表明:铝粉燃烧能量的释放和空间束缚使燃烧转为爆燃,火焰前锋下方存在大片的燃烧反应区;铝粉粒径越小,颗粒氧化层破裂需要的热应力越小,越容易被点燃;随着铝粉粒径减小,热膨胀对火焰传播速度的影响明显增强。  相似文献   

16.
为进一步开发煤矿井下瓦斯爆炸事故的隔抑爆技术装备,利用截面为0.2 m×0.2 m的方形管道、纹影仪和高速摄像机,开展无障碍物时和球形障碍物存在情况下的瓦斯爆燃传播试验。研究发现,无障碍物时,密闭管道内爆燃火焰的结构和传播速度受反射压力波的影响很大,湍流火焰、化学反应作用能力与反射压力波的相互作用是造成火焰传播速度变化的主要原因;球形障碍物存在时,火焰受扰动后被拉伸为前锋、中锋和尾锋,前锋速度最快,尾锋最慢;火焰前锋从经过障碍物开始整体呈加速趋势,与无障碍物相比,通过观察段的时间明显缩短。  相似文献   

17.
Flame propagation and combustion characteristics of methane/air mixed gas in gas explosion were studied in a constant volume combustion bomb. Stretched flame propagation velocity, unstretched laminar flame propagation velocity, unstretched laminar combustion velocity and Markstein length were obtained at various ratios of nitrogen to gas mixture. Combustion stability at various ratios of nitrogen to gas mixture was analyzed by analyzing the pictures of flame propagation. Furthermore, the effect of initial pressure on the flame propagation and combustion characteristics of methane/air mixed gas in gas explosion was analyzed. The results show that the unstretched laminar flame propagation velocity, the unstretched laminar combustion velocity, Markstein length, flame stability, and the maximum combustion pressure decrease distinctly with the increase of nitrogen fraction in the gas mixture. At the same ratios of nitrogen to gas mixture, Markstein length, unstretched laminar flame propagation velocity and unstretched laminar combustion velocity decrease and the maximum combustion pressure increase with the increase of initial pressure of the gas mixture. When nitrogen fraction in the gas mixture is over 20%, the flame will be unstable and is easy to exterminate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号