首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Grafted Norway spruce trees were subjected to exposure beginning in April 1988, to one of four different air treatments in open-top chambers: Charcoal filtered air (CF), non-filtered air (NF), non-filtered air with the addition of O(3) during summer (NFO), and SO(2) plus NO(2) during winter (NFOSN). CF trees were considered as the reference group. No effects on growth parameters were observed. Samples of the two youngest needle year classes were taken late in November 1989 for enzyme determinations. The activity of ascorbic acid peroxidase (A-POD) increased the same level in all treatments, and activities of catalase and dehydroascorbic acid reductase (DHA-R) increased only in NF and NFO treatments. A higher level of activity in the NFOSN treatment was observed only for glucose-6-phosphate-dehydrogenase (Glc-6-P-DH) and non-specific peroxidase (POD). Isoelectric focusing of POD showed a changed pattern in the NFOSN treatment. Neither activity nor isoelectric focusing of superoxidase dismutase (SOD) was changed in any of the treatments.  相似文献   

2.
The aim of the present study was to examine if ozone produced similar effects on spring wheat growth with and without small amounts of nitrogen oxides. Two methods were used to produce ozone: the first method consisted of dry pressurized air fed to an electric discharge generator generating the byproducts, N2O5 and N2O, the second method consisted of ambient air fed to UV-lamps. Two spring wheat cultivars (Triticum aestivum L. cvs Minaret and Eridano) were exposed in small open-top chambers to charcoal-filtered air, non-filtered ambient air, and non-filtered ambient air with the addition of ozone for 8 h (0900 to 1700 h) daily, for five weeks. Plants were harvested every week. The growth of Minaret was shown to be more sensitive to O3 than that of Eridano. Leaf senescence increased with increasing ozone level in both cultivars. The total above-ground biomass dry weight decreased with increasing ozone concentration in Minaret, but not in Eridano. The Minaret plants reacted with more damaged leaf dry weight and inhibition of growth when O3 was produced by UV-lamps than when O3 was produced by air fed to an electric discharge generator. This could be explained by more nitrogen content per plant but not by increased nitrogen concentration in plant tissue in plants exposed to increased O3 and small amounts of incidental nitrogen oxides.  相似文献   

3.
Spring wheat, Triticum aestivum, was grown in open-top field chambers and exposed during the whole life cycle to filtered and non-filtered ambient air. The relatively low ambient pollution level did affect plant growth but had no effect on the overall grain yield of the two spring wheat cultivars Echo (1987) and Pelican (1988). A reduced root growth was found in both years which could be attributed mainly to the deposition of NO2 and SO2. Effects on crop development most likely due to ozone were limited to the 1987 growing season during which the ambient ozone concentrations were enhanced compared to 1988. This resulted in a slightly increased grain harvest index, a reduced 1000-grain weight, straw yield and a greater reduction in root growth. Visible damage resembling ozone injury appeared both years during seedling growth.  相似文献   

4.
Two cultivars of Igri and Gerbel winter barley Horteum vulgare L. were grown in open-top chambers in filtered and unfiltered air at a site with approximately 10 nl litre(-1) SO2 and 12 nl litre(-1) NO2 (seasonal mean). The experiment ran for three consecutive seasons 1982-1983, 1983-1984, 1984-1985, and significant effects of filtration were observed for each crop. In years 1982-1983 and 1984-1985, the crops in unfiltered air yielded larger grain dry matter, 9% in 1982-1983, and 8% in 1984-1985. For both crops, the differences were statistically significant at the 5% level. Differences were also observed for the remaining above-ground dry matter, and these were consistent in direction in each year but statistically significant only in 1984-1985. In both growing seasons (1982-1983 and 1984-1985), there were no major pest infestations and no long-term water stress or photochemical ozone episodes. In the remaining experiment (1983-1984) similar air concentrations of SO2 and NO2 produced effects of the opposite sign to those observed in 1982-1983 and 1984-1985. Significant reductions in grain yield (13%) were obtained in unfiltered air. The only major environmental difference for the 1983-1984 crop was a notable dry period in May and June 1984 with marked water stress in the crop, requiring irrigation. These results suggest that the relationship between yield and pollutant concentration may be confounded by additional stresses, many of which are a common component of the growing season for major crops.  相似文献   

5.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

6.
The effects of two-year early season ozone exposure on physiological and biochemical stress response were investigated in model plant communities. Achillea millefolium and Veronica chamaedrys target plants were grown in monocultures and in mixed cultures with Poa pratensis (phytometer) and exposed in open-top chambers over two years for five weeks to charcoal-filtered (CF) air plus 25 nl l(-1) O3 (control) and non-filtered (NF) air plus 50 nl l(-1) O3. Significant O3 effects were detected in different physiological and biochemical parameters, evidencing interspecific differences in metabolic stress responses and a strong influence of the competition factor. O3 induced strong oxidative effects in Achillea irrespective to the different growth modality. Veronica showed less O3-induced effects in monoculture than when grown in competition with the phytometer. Poa exhibited a different behaviour against O3 depending on the species in competition, showing an overall higher sensitivity to O3 when in mixture with Achillea.  相似文献   

7.
Solanum tuberosum L. cv Norchip plants were grown in open-top chambers in the summer of 1986. Plants were treated with charcoal-filtered air, nonfiltered air, or nonfiltered air supplemented with 33, 66, or 99% of the ambient ozone (O3) concentrations from 1000 to 2000 h eastern daylight time daily. In addition, plants received charcoal-filtered air plus 0, 0.15 (393 microg m(-3)), 0.34 (891 microg m(-3)), or 0.61 (1598 microg m(-3)) ppm sulfur dioxide (SO2) from 0900 to 1200 h once every 14 d for a total of four treatments. Ozone induced a linear reduction in number and weight of Grade One (> 6.35-cm diameter) potato tubers and in total weight of tubers. Ozone also induced linear reductions in the percentage of dry matter of tubers and linear decreases in glucose and fructose content of Grade One tubers. Sulfur dioxide induced a stimulation and then decline of the number, percentage of dry matter, and sucrose content of Grade One tubers. The SO2 response best fit a quadratic curve. No O3 x SO2 interactions were detected for any of the yield or quality functions measured.  相似文献   

8.
Purple coneflower plants (Echinacea purpurea) were placed into open-top chambers (OTCs) for 6 and 12 weeks in 2003 and 2004, respectively, and exposed to charcoal-filtered air (CF) or twice-ambient (2x) ozone (O3) in 2003, and to CF, 2x or non-filtered (NF), ambient air in 2004. Plants were treated with ethylenediurea (EDU) weekly as a foliar spray. Foliar symptoms were observed in >95% of the plants in 2x-treated OTCs in both years. Above-ground biomass was not affected by 2x treatments in 2003, but root and total-plant biomass decreased in 2004. As a result of higher concentrations of select cell wall constituents (% ADF, NDF and lignin) nutritive quality was lower for plants exposed to 2x-O3 in 2003 and 2004 (26% and 17%, respectively). Significant EDU x O3 interactions for concentrations of cell wall constituents in 2003 indicated that EDU ameliorated O3 effects on nutritive quality. Interactions observed in 2004 were inconsistent.  相似文献   

9.
Spring wheat (Triticum aestivum L., cv. Albis) was grown in the field at a site located in central Switzerland, and exposed to chronic doses of ozone (O(3)) in open-top chambers to study impacts on yield. The experiment was carried out in 1986, 1987 and 1988. The treatments used included charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air to which constant amounts of O(3) (two levels, O(3)-1 and O(3)-2) were added daily from 09.00 until 17.00 local time. Mean solar radiation-weighted O(3) concentrations during the fumigation period were in the range 0.016-0.022 microl litre(-1) (CF), 0.036-0.039 microl litre(-1) (NF), 0.057-0.058 microl litre(-1) (O(3)-1, used in 1987 and 1988 only) and 0.078-0.090 microl litre(-1) (O(3)-2). Fumigation was maintained from the three-leaf stage until harvest. Ambient plots were used as a reference. Plant characteristics examined included straw yield, grain yield, number of grains per head, number of heads per surface area, weight of individual grains and harvest index (ratio of grain weight to total dry weight). Pollutant concentrations and other environmental parameters were monitored continuously inside and outside the chambers. In 1986 and 1987, enclosure mostly increased the values of different parameters, while in 1988, they were decreased. The negative enclosure effect was due to extremely turbulent winds, which caused lodging inside the chambers. In all 3 years, increasing O(3) concentrations negatively affected the parameters studied, except for the number of heads per surface area, which showed no treatment response. Grain yield showed a very sensitive response to O(3). The effect of O(3) on grain yield was due to an effect primarily on grain size and secondarily on grain number. The relative response of grain yield to O(3) was similar in all 3 years, despite year-to-year differences in climatic conditions and enclosure effects. The analysis of the data for combined years revealed an increase of about 10% in grain yield due to air filtration. The corresponding increase in straw yield was only about 3.5%. Exposure-response models were developed for individual years and combined years. It is concluded that, in the study area, ambient O(3) may affect grain yield in spring wheat.  相似文献   

10.
Water-stressed and well-watered soybean (Glycine max cvs. Williams and Corsoy) plants were exposed to increasing seasonal doses of ozone (O(3)) using open-top field chambers and ambient air plots. Chamber O(3) treatments included charcoal filtered (CF) air, non-filtered (NF) air, NF + 0.03, NF + 0.06 and NF + 0.09 microl litre(-1) O(3). Soil water potentials measured at 25 and 45 cm averaged -0.40 MPa and -0.05 MPa, respectively, for the plots in the water-stressed and well-watered series. Total root length/core, root length densities, and biomasses (dry weights) were determined. With Williams, a very popular cultivar in recent years, total root length for all O(3) treatments averaged 58% more under water-stress conditions than in well-watered plots, but the range was from 136% to 11% more for NF air and NF + 0.09 microl litre(-1) O(3), respectively. Increasing the O(3) exposure dose did not affect root lengths or weights in the well-watered series. With Corsoy, water stress did not significantly increase root development. In both soil moisture regimes, with both cultivars, there was a linear decrease in seed yield and top dry weight as the O(3) exposure dose increased.  相似文献   

11.
The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O3) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O3 stomatal conductance model used to estimate tree O3 uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l(-1). The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g(max), f(min), and new f(VPD), f(temp) and f(phen) functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version.  相似文献   

12.
This study was conducted to determine the physiological and growth responses of cotton (Gossypium hirsutum L.) to the interaction of ozonee (O3) and drought stress. Cotton (cv SJ-2) was grown in open-top chambers in the field at three levels of soil water and exposed to charcoal-filtered air (CF), nonfiltered air (NF), and NF x 1.25, and NF x 1.5 ambient O3 concentrations in Riverside, CA, from June to October 1986. Ozone reduced carbon fixation an average of 74.6% in optimally watered (OW) plots, 63.4% in suboptimal (SO) plots, but only 19.3% in severely water-stressed (SS) plots. Leaf and stem biomass in OW and SO plots showed similar linear reductions in mass response to increased O3 concentrations, but SS plots showed no response to O3 except at the highest O3 treatment (seasonal 12-h O3 mean of 0.111 ppm 218 microm(-3)). These results showed that moderately water-stressed cotton had similar physiological and growth responses to O3 as well-watered plants, but severely water-stressed cotton showed little response to O3 at ambient O3 concentrations.  相似文献   

13.
Effects of increased ozone (O3) and carbon dioxide (CO2) on polyamine levels were determined in soybean (Glycine max L. Merr. cv. Clark) grown in open-top field chambers. The chamber treatments consisted of three O3 regimes equal to charcoal filtered (CF), non-filtered (NF), and non-filtered plus 40 nl litre(-1) O3 and CO2 treatments equal to 350, 400 and 500 microl litre(-1) for a total of nine treatments. Leaf samples were taken at three different times during the growing season. Examination of growth and physiological characteristics, such as photosynthesis, stomatal resistance, and shoot weight, revealed that increasing CO2 ameliorated the deleterious effects of increased O3. Results from the initial harvest, at the pre-flowering growth stage (23 days of treatment), showed that increasing O3 at ambient CO2 caused increases in putrescine (Put) and spermidine (Spd) of up to six-fold. These effects were lessened with increased CO2. Elevated CO2 increased polyamines in plants treated with CF air, but had no effect in the presence of ambient or enhanced O3 levels. Leaves harvested during peak flowering (37 days of treatment) showed O3-induced increases in Put and Spd at ambient CO2 concentrations. However, increased CO2 levels inhibited this response by blocking the O3-induced polyamine increase. Leaves harvested during the pod fill stage (57 days of treatment) showed no significant O3 or CO2 effects on polyamine levels. Our results demonstrate that current ambient O3 levels induce the accumulation of Put and Spd early in the growing season and that further increases in O3 could result in even greater polyamine increases. These results are consistent with a possible antiozonant function for polyamines. The ability of increased CO2 to protect soybeans from O3 damage, however, does not appear to involve polyamine accumulation.  相似文献   

14.
Potted plants of commercial cultivars of rape (Brassica napus L., cv. 'callypso'), summer barley (Hordeum vulgare L., cvs. 'arena' and 'hockey') and bush beans (Phaseolus vulgaris L., cvs. 'rintintin' and 'rosisty') were continuously exposed in open-top chambers to sulphur dioxide (SO(2)) for the whole growing season in order to assess effects of this pollutant on growth and various yield parameters. Treatments consisted of charcoal-filtered air (CF) and CF supplemented with four levels of SO(2), resulting in mean exposure concentrations (microg m(-3)) of approximately 8, 50, 90, 140 and 190. With the exception of the 1000 seeds weight, which was slightly reduced, dry matter production and yield parameters of rape remained unaffected by all SO(2) concentrations or were even stimulated. Compared to CF vegetative growth of both bean cultivars was reduced by 10-26% at all SO(2) levels; however, with significant effects only for cv. 'rintintin'. While all SO(2) additions reduced significantly the yield (dry weight of pods) of the bean cultivar 'rosisty' between 17% and 32%, cv. 'rintintin' showed a significant reduction of up to 42% only at the two highest pollutant concentrations. Dry matter production of the barley cultivars was mainly impaired at SO(2) concentrations > 100 microg m(-3) with a reduction of 30-52%. While nearly all yield parameters of cv. 'hockey' reacted similar to the dry matter production, the yield of cv. 'arena' was reduced already at the low SO(2) levels. At a treatment concentration of 90 microg SO(2) m(-3) a significant yield loss of 30% was recorded. A reduction of the 1000 grains weight mainly contributed to these yield losses observed for both barley cultivars. From these results, it may be assumed that SO(2) concentrations within the range 50-90 microg m(-3) are potentially phytotoxic to some crop species.  相似文献   

15.
A new large-scale closed chamber fumigation system with cooling facilities is described for studying effects of low concentrations of SO(2), NO(2) and O(3) and low temperatures on woody species and herbaceous plants. The system is based on modified hemispherical greenhouses with a forced air ventilation system. This provides a chamber environment with low spatial variability of pollutant gas concentrations and rapid air circulation which allows exposure of plants at near ambient temperatures and relative humidity. Large capacity cooling units come into operation when ambient temperatures fall below 0 degrees C, and these allow chamber temperatures to be lowered by an additional 4 to 8 degrees C in experiments designed to test whether exposure to pollutants enhances the frost sensitivity of plants.  相似文献   

16.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

17.
Spring wheat (Triticum aestivum L., cv. Drabant) was exposed to different concentrations of ozone in open-top chambers for two growing seasons, 1987 and 1988, at a site located in south-west Sweden. The chambers were placed in a field of commercially grown spring wheat. The treatments were charcoal-filtered air (CF), non-filtered air (NF) and non-filtered air plus extra ozone (NF(+)). In 1988, one additional ozone concentration (NF(++)) was used. Grain yield was affected by the ozone concentration of the air. Air filtration resulted in an increase in grain yield of about 7% in both years, compared to NF. The addition of ozone (NF(+), NF(++)) reduced grain yield and increased the content of crude protein of the grain in both years. Filtration of the air had no significant effect on the content of crude protein, compared to NF. The results showed a strong positive chamber effect on grain yield in the cold and wet summer of 1987. In 1988, there was no net chamber effect on grain yield. The relative differences between the CF, NF and NF(+) treatments with respect to grain yield were of the same magnitude in the two years, despite the very different weather conditions.  相似文献   

18.
European beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Silver fir (Abies alba Mill.) were exposed to low concentrations of ozone (O(3)) and sulfur dioxide (SO(2)), alone and combined, and simulated acid rain (pH 4.0) in sheltered open-top chambers in Hohenheim (Southwest Germany) for almost five years. The concentrations of O(3) and SO(2) used were related to annual ambient average found in southern West Germany. Two control chambers were ventilated with charcoal filtered air and rainfall was simulated at pH 4.0 and 5.0. Because of large dense plant growth in the chambers it was only possible to measure uncompleted growth of shoots in the upper canopy. Therefore, growth analysis was restricted to this area. The treatment with acidic precipitation decreased the annual shoot growth of beech and reduced leaf surface area of those trees. Exposure to SO(2), O(3) alone and in combination resulted in further reduction of shoot length and leaf surface area. Fumigation with SO(2) and O(3) + SO(2) caused insignificant decreases of shoot length, total dry weight and needle surface area of spruce. The lateral leader shoot growth of spruce exposed to O(3) was significantly reduced only in the last year of the experiment. Growth rates of the spruce exposed to charcoal filtered air and non-acidic precipitation were reduced more than those of beech and fir. Growth variables determined for fir reflected different rates of incremental change. Exposure to O(3) resulted in the largest dry matter production of all fir groups but those exposed to charcoal filtered air and non-acidic precipitation responded with the best lateral leader shoot growth, lowest specific leaf area (SLA) and leaf area ratio (LAR) respectively indicating best metabolic efficiency. At the conclusion of this study a classification of sensitivity was developed for the tree species.  相似文献   

19.
Responses of bush bean (Phaseolus vulgaris L.) lines 'S156' (O(3)-sensitive) and 'R123' (O(3)-tolerant), and cultivars 'BBL 290' (O(3)-sensitive) and 'BBL 274' (O(3)-tolerant) to ambient ozone (O(3)) were investigated during the 2001 and 2002 growing seasons. Seedlings were grown in pots inside open-top chambers (OTCs), with charcoal filtered (CF) and non-filtered (NF) ambient air, and in non-chambered ambient air (AA) plots. Growth parameters from individual plants were evaluated after harvests at the end of vegetative (V(4)) and reproductive (R(10)) growth phases. Results at V(4) indicated that CF did not provide additional benefits over NF in 'S156' in 2001 and 2002. In contrast, exposure to CF significantly impaired the growth of 'R123'. At the end of R(10), 'S156' produced more pods, most of which remained immature, and contained fewer seeds or were more frequently aborted, whereas pods produced in 'R123' reached pod maturation and senescence more consistently. Despite increased seed weights inside the OTCs, as observed in 'S156', differences between the two lines were insignificant when grown outside OTCs. Results from the 'BBL 290'/'BBL 274' pair, especially at V(4) phase, remained inconclusive. Plant morphological characteristics, variabilities in environmental conditions, and 'chamber effects' inside OTCs were influential in determining plant response to ambient O(3).  相似文献   

20.
An evaluation of the effects of ambient ozone (O3) on muskmelon was conducted with the use of open-top chambers (OTCs). 'Superstar' muskmelons grown in charcoal-filtered (CF) chambers compared to those grown in nonfiltered (NF) chambers showed significant differences in the severity of visible foliar O3 injury. Furthermore, plants grown in NF conditions had significantly less (21.3%) marketable fruit weight and fewer (20.9%) marketable fruit number than those from CF chambers. No differences were found in early biomass production, leaf area, or number of nodes after 3 weeks of exposure to treatment conditions. Ambient O3 did not affect soluble solids content of mature fresh fruit nor foliage fresh weight at final harvest. Results indicate that ambient concentrations of O3 in southwestern Indiana caused significant foliar injury and yield loss to muskmelons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号