首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potted plants of commercial cultivars of rape (Brassica napus L., cv. 'callypso'), summer barley (Hordeum vulgare L., cvs. 'arena' and 'hockey') and bush beans (Phaseolus vulgaris L., cvs. 'rintintin' and 'rosisty') were continuously exposed in open-top chambers to sulphur dioxide (SO(2)) for the whole growing season in order to assess effects of this pollutant on growth and various yield parameters. Treatments consisted of charcoal-filtered air (CF) and CF supplemented with four levels of SO(2), resulting in mean exposure concentrations (microg m(-3)) of approximately 8, 50, 90, 140 and 190. With the exception of the 1000 seeds weight, which was slightly reduced, dry matter production and yield parameters of rape remained unaffected by all SO(2) concentrations or were even stimulated. Compared to CF vegetative growth of both bean cultivars was reduced by 10-26% at all SO(2) levels; however, with significant effects only for cv. 'rintintin'. While all SO(2) additions reduced significantly the yield (dry weight of pods) of the bean cultivar 'rosisty' between 17% and 32%, cv. 'rintintin' showed a significant reduction of up to 42% only at the two highest pollutant concentrations. Dry matter production of the barley cultivars was mainly impaired at SO(2) concentrations > 100 microg m(-3) with a reduction of 30-52%. While nearly all yield parameters of cv. 'hockey' reacted similar to the dry matter production, the yield of cv. 'arena' was reduced already at the low SO(2) levels. At a treatment concentration of 90 microg SO(2) m(-3) a significant yield loss of 30% was recorded. A reduction of the 1000 grains weight mainly contributed to these yield losses observed for both barley cultivars. From these results, it may be assumed that SO(2) concentrations within the range 50-90 microg m(-3) are potentially phytotoxic to some crop species.  相似文献   

2.
The results of two field studies and an open-top chamber fumigation experiment showed that the response of mature Scots pine to SO(2) and NO(2) differed from that of mature Norway spruce. Moreover, the response of pine seedlings to SO(2) and NO(2) differed from that of mature trees. The greater increase in the needle total S concentrations of pine suggested more abundant stomatal uptake of SO(2) compared to spruce. Both pine seedlings and mature trees also seemed to absorb more N from atmospheric deposition. Mature pine was able to assimilate SO(4)(2-) derived from SO(2) into organic S more effectively than mature spruce at the high S and N deposition sites, whereas both pine and spruce seedlings accumulated SO(4)-S under NO(2)+SO(2) exposure. Spruce, in turn, accumulated SO(4)-S even when well supplied with N. Net assimilation of SO(4)(2-) in conifer seedlings was enhanced markedly by elevated temperature. To protect the northern coniferous forests against the harmful effects of S and N deposition, it is recommended that the critical level for SO(2) as a growing season mean be set at 5-10 microg m(-3) and NO(2) at 10-15 microg m(-3), depending on the 'effective temperature sum' and/or whether SO(2) and NO(2) occur alone or in combination.  相似文献   

3.
Much attention has been paid to ozone as a major cause of novel forest decline in Europe. In combination with acidic mist, O(3) has been observed to increase ion leaching. Besides cations lake Mg(2+), Ca(2+), K(+), NH(4)(+), considerable amounts of nitrate were found to be leached by acidic mist from needles of Norway spruce. Controlled fumigation experiments, with 100, 300, and 600 microg O(3)m(-3) over 22 days continuously, have led to a nitrate accumulation of 94.1 +/- 14.8, 119.4 +/- 28.7 and 198.9 +/- 14.9 microg NO(3)(-1) g(-1) FW, respectively, in leaves of Quercus robur. Similar values were found in leaves of Fagus sylvatica and current and previous year needles of Picea abies. Nitrate levels of controls receiving charcoal filtered air were well below 40 microg NO(3)(-) g (-1) FW. Statistically significant elevated nitrate levels were observed after only 48 h of continuous fumigation with 600 microg O(3)m(-3), in all tree species tested, and after 144 h in the 100 microg O(3)m(-3) treatment. In another experiment, trees of Picea abies were kept in two charcoal (C) and two Purafil plus charcoal (P/C) ventilated chambers, and fumigated with O and 500 microg O(3)m(-3) in cabinets of each filter-type in order to eliminate NO(x) from chamber air. After 29 days of continuous ozone fumigation, NO(3)(-) accumulation in needles amounted to 102.0 +/- 37.7 and 137.4 +/- 40.5 microg g(-1) FW in P/C and C-filtered chambers, respectively. Nitrate contents of controls were below 30 microg NO(3)(-)g(-1) FW at the end of the experiment. No significant differences in NO(3)(-) accumulation between filter treatments were observed. Since NO(x) was reduced by more than 95% in the Purafil/charcoal versus the charcoal treatment, NO(3)(-) accumulation in needles can be attributed predominantly to the influence of ozone and not to direct NO(2) uptake of needles by the possible oxidation of NO to NO(2) in the presence of ozone.  相似文献   

4.
The impact of air pollutants on plant/parasite-interactions has been investigated. It could be demonstrated that fumigation of Vicia faba L. with 0.15 ppm SO2 (400 microg m(-3)) or 0.2 ppm NO2 (400 microg m(-3)) during 7 days caused changes in plant metabolism which resulted in higher growth rates of the aphid Aphis fabae Scop. feeding on these plants. Fumigation of V. faba with 0.085 ppm O3 during 2 or 3 days, however, caused decreased aphid growth on fumigated plants. That result could be reversed by higher O3 concentrations or through the presence of NOx during O3 fumigation. Ambient air comprising a mixture of pollutant gases had a strong enhancing effect on aphid performance. Thus, the growth of A. fabae on field bean plants was significantly higher in ambient summertime. London air than in charcoal-filtered air. Similarly, the growth of Macrosiphon rosae L. on rose bushes (Rosa sp., cv. Nina Weibull) was improved in ambient summertime Munich air; the increase in growth rate averaged about 20%.  相似文献   

5.
Intermittent exposure of tomato plants (cv. Pusa Ruby) to SO(2) at 286 microg m(-3) (3 h every heavy third day for 75 days) induced slight chlorosis of leaves. At 571 microg m(-3), considerable chlorosis with browning developed on the foliage. These symptoms were more pronounced and appeared earlier on SO(2)-exposed plants infected with Meloidogyne incognita race 1 (Mi), especially in post- and concomitant-inoculation exposures. Mi and/or SO(2) significantly reduced different parameters of plant growth. Synergistic (positive) interactions between SO(2) and Mi occurred in concomitant- and post-inoculation exposures at 286 and 571 microg m(-3), respectively. In other treatments, an antagonistic (negative) interaction was observed. However, in a few cases, additive effects of SO(2) and Mi were also recorded. Intensity of root-knot (galling) was enhanced at both concentrations of SO(2), while reproduction (egg mass production) of Mi was enhanced in concomitant-inoculation exposures at 286 microg m(-3) and inhibited at 571 micro m(-3). Exposure to SO(2) and/or Mi decreased the number and size of stomata but increased the number and length of trichomes on both the leaf surfaces. Stomatal aperture was significantly wider in the plants exposed to 571 microg SO(2) m(-3) alone and in pre-, post-, and concomitant-inoculation exposures at 286 or 571 microg m(-3). Stomatal aperture was directly related to foliar injury and reductions in growth, yield, and leaf pigments.  相似文献   

6.
The effects of joint action of SO(2) and HF on the yield and quality of wheat and barley were studied by exposing them to combinations of <13,130 or 267 microg m(-3) SO(2) and 0.03 or 0.38 microg m(-3) HF in open top chambers for 90 days. At the concentrations used, SO(2) had greater effects than HF. All responses were marked by compensatory changes. The treatments had no effect on wheat yield, although SO(2) reduced shoot weight. SO(2) increased the growth and yield of barley, and HF or SO(2) increased the grain protein concentration of barley and wheat. The effects of mixtures of SO(2) and HF were complex, but often antagonistic, as the addition of HF counteracted the effect of SO(2) alone.  相似文献   

7.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

8.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

9.
Throughfall was collected in a Scots pine forest exposed to about 14 microg m(-3) of both SO2 and NO2, and in a control forest with 1 microg m(-3) SO2 and < 1 microg m(-3) NO2. Precipitation was collected in a nearby open field. Collection was performed on an event basis during the whole vegetation period. Exposure was made by an open-air release system during the vegetation period, except during rain and at night. Additional sulfate deposition in the exposed forest (compared to control forest) was nearly equal to dry deposition of sulfur dioxide, as estimated with a stomatal conductance model adapted for the particular forest. It is thus concluded that essentially all of the dry deposited sulfur dioxide is eventually extracted and appears in throughfall-including the fraction that has been deposited through stomata. Attempts to relate net throughfall deposition to dry deposition of sulfate in the control forest were inconclusive, since a minor (10%) uncertainty in the water balance had a major influence on calculated deposition velocity for particulate sulfate. Nitrate throughfall deposition is about half of the open field wet deposition, both for the exposed and control forest. Thus, a long-term exposure with about 14 microg m(-3) NO2 decreased nitrate throughfall deposition.  相似文献   

10.
The objective of this project is to demonstrate how the ambient air measurement record can be used to define the relationship between O3 (as a surrogate for photochemistry) and secondary particulate matter (PM) in urban air. The approach used is to develop a time-series transfer-function model describing the daily PM10 (PM with less than 10 microm aerodynamic diameter) concentration as a function of lagged PM and current and lagged O3, NO or NO2, CO, and SO2. Approximately 3 years of daily average PM10, daily maximum 8-hr average O3 and CO, daily 24-hr average SO2 and NO2, and daily 6:00 a.m.-9:00 a.m. average NO from the Aerometric Information Retrieval System (AIRS) air quality subsystem are used for this analysis. Urban areas modeled are Chicago, IL; Los Angeles, CA; Phoenix, AZ; Philadelphia, PA; Sacramento, CA; and Detroit, MI. Time-series analysis identified significant autocorrelation in the O3, PM10, NO, NO2, CO, and SO2 series. Cross correlations between PM10 (dependent variable) and gaseous pollutants (independent variables) show that all of the gases are significantly correlated with PM10 and that O3 is also significantly correlated lagged up to two previous days. Once a transfer-function model of current PM10 is defined for an urban location, the effect of an O3-control strategy on PM concentrations is estimated by calculating daily PM10 concentrations with reduced O3 concentrations. Forecasted summertime PM10 reductions resulting from a 5 percent decrease in ambient O3 range from 1.2 microg/m3 (3.03%) in Chicago to 3.9 microg/m3 (7.65%) in Phoenix.  相似文献   

11.
This paper introduces a series of publications referring to a single 14-month laboratory study testing the hypothesis that the recent decline of Norway spruce (Picea abies (L.) Karst.) at higher elevations of the Bavarian Forest and comparable forests in medium-range mountains and in the calcareous Alps is caused by an interaction of elevated ozone concentrations, acid mist and site-specific soil (nutritional) characteristics. The effect of climatic extremes, a further important factor, was not included as an experimental variable but was considered by testing of the frost resistance of the experimental plants. Results of these individual studies are presented and discussed in the following 14 papers. Plants from six pre-selected clones of 3-year-old Norway spruce (Picea abies (L.) Karst.) were planted in April 1985 in an acidic soil from the Bavarian Forest, or a calcareous soil from the Bavarian Alps. After a transition period, plants were transferred, in July 1986, into four large environmental chambers and exposed for 14 months to an artificial climate and air pollutant regime based on long-term monitoring in the Inner Bavarian Forest. The climatic exposure protocol followed realistic seasonal and diurnal cycles (summer maximum temperature, 26 degrees C; total mean temperature, 9.8 degrees C; winter minimum, -14 degrees C; mean relative humidity, 70%; maximum irradiance, 500 W m(-2); daylength summer maximum, 17 h; winter minimum, 8 h). Plants were fumigated with ozone, generated from pure oxygen (control: annual mean of 50 microg m(-3); pollution treatment: annual mean of 100 microg m(-3) with 68 episodes of 130-360 microg m(-3) lasting 4-24 h), and background concentrations of SO(2) (22 microg m(-3)) and NO(2) (20 microg m(-3)); windspeed was set at a constant 0.6 m s(-1). Plants were additionally exposed to prolonged episodes of misting at pH 5.6 (control) and pH 3.0 (treatment). Simulation of the target climatic and fumigation conditions was highly reliable and reproducible (temperature +/-0.5 degrees C; rh+/-10%; ozone+/-10 microg m(-3);SO(2) and NO(2)+/-15 microg m(-3)).  相似文献   

12.
Plants of rice (Oryza sativa) and white bean (Phaseolus vulgaris) were exposed to 524 microg m(-3) SO2, 392 microg m(-3) O3 and a mixture of both gases, i.e. 524 microg m(-3) SO2 and 392 microg m(-3) O3 to determine the visible foliar injury and leaf diffusive resistance. Response of leaf diffusive resistance was measured on upper and lower surfaces of leaves, i.e. the two unifoliate leaves of bean and the first, second and third primary leaves of rice. The difference in the response may be due to sensitive guard cells causing stomatal closure in the presence of O3, whilst a low concentration of SO2 caused the stomata to open. Thus, SO2 alone is known to decrease, and O3 tends to increase leaf diffusive resistance. However, exposure to both gases increases or decreases the resistance, depending on the species response.  相似文献   

13.
Measurements from sites of the Southeastern Aerosol Research and Characterization (SEARCH) program, made from 1998 to 2001, are used with a thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilbrium (SCAPE2), to extend an earlier investigation of the responses of fine particulate nitrate (NO3-) and fine particulate matter (PM2.5) mass concentrations to changes in concentrations of nitric acid (HNO3) and sulfate (SO42-). The responses were determined for a projected range of variations of SO42- and HNO3 concentrations resulting from adopted and proposed regulatory initiatives. The predicted PM2.5 mass concentration decreases averaged 1.8-3.9 microg/m3 for SO42- decreases of 46-63% from current concentrations. Combining the S042- decrease with a 40% HNO3 decrease from current concentrations (approximating expected mobile-source oxides of nitrogen [NOx] reductions by 2020) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0.2 microg/m3 for three nonurban sites and 0.8-1 microg/m3 for one nonurban and two urban sites. Increasing the HNO3 reduction to 55% (an estimate of adding Clear Skies Phase II NOx reductions) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0-0.4 microg/m3. Because of the well-documented losses of particulate NO3- from Federal Reference Method (FRM) filters, only a fraction of these incremental changes would be observed.  相似文献   

14.
Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Guba?ówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical for this part of Europe and below the expected levels of phytotoxicity.  相似文献   

15.
K F Chang  G C Fang  C S Lu  H L Bai 《Chemosphere》2001,45(6-7):791-799
Ambient air particle concentrations were sampled by two total suspended particle (TSP) samplers, PM10/PM2.5 specific sampler and micro-orifice uniform deposit impactor (MOUDI) during July-October 2000 at a traffic sampling site in central Taiwan. The average TSP concentration (194 microg/m3) was about a factor of two higher than that of the fraction <2.5 microm (93.2 microg/m3). The mean level of the fraction <10 microm collected by MOUDI (93.2 microg/m3) was about 1 1/2 times higher than that of the size class <2.5 microm (43.8 microg/m3). Furthermore, this fraction showed a certain correlation with the TSP concentration. The particle size distribution was bimodal in the ambient air at the traffic site. The major peaks appear at particle diameters between 0.56-1.0 and 3.2-5.6 microm. The percentages of anions contained in TSP were 0.24% F-, 13.7% Cl, 0.52% Br, 12.0% NO-, 18.9% NO2-, and 54.6% SO2-. The Cl-, NO2-, and NO3- size distributions were all unimodal and the major peaks appeared at 3.2-5.6 microm. The SO2 size distribution was bimodal, with major peaks at 0.32-0.56 and 3.2-5.6.  相似文献   

16.
Crop growth along a gradient of ambient air pollution   总被引:1,自引:0,他引:1  
An experiment, designed to elucidate the relative importance of SO2, NO2, O3, and other environmental factors in influencing the performance of four cultivars of Trifolium pratense L. and Hordeum vulgare L., was performed by growing plants in situ along a transect from central London into the surrounding countryside. A multiple regression analysis provided evidence of significant effects of SO2, NO2, and, to a lesser extent, O3, on vegetative and reproductive growth parameters, although these differed according to pollutant, cultivar, species, and the parameter concerned. The significance of these findings for the impact of ambient air pollution on the growth of crops in the more polluted rural areas of western Europe is suggested by the fact that mean SO2, NO2, and O3 concentrations in the experimental area are less than 0.020 (39.2 microg/m3), 0.025 (47.75 microg/m3), and 0.030 ppm (58.8 microg/m3), respectively. The value of the technique is discussed with respect to other studies on the effects of low levels of air pollution on crops.  相似文献   

17.
Solanum tuberosum L. cv Norchip plants were grown in open-top chambers in the summer of 1986. Plants were treated with charcoal-filtered air, nonfiltered air, or nonfiltered air supplemented with 33, 66, or 99% of the ambient ozone (O3) concentrations from 1000 to 2000 h eastern daylight time daily. In addition, plants received charcoal-filtered air plus 0, 0.15 (393 microg m(-3)), 0.34 (891 microg m(-3)), or 0.61 (1598 microg m(-3)) ppm sulfur dioxide (SO2) from 0900 to 1200 h once every 14 d for a total of four treatments. Ozone induced a linear reduction in number and weight of Grade One (> 6.35-cm diameter) potato tubers and in total weight of tubers. Ozone also induced linear reductions in the percentage of dry matter of tubers and linear decreases in glucose and fructose content of Grade One tubers. Sulfur dioxide induced a stimulation and then decline of the number, percentage of dry matter, and sucrose content of Grade One tubers. The SO2 response best fit a quadratic curve. No O3 x SO2 interactions were detected for any of the yield or quality functions measured.  相似文献   

18.
This study considers the characteristics of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)) and sulfur dioxide (SO(2)) in two major South Korean cities, including the capital city of Seoul, over a time period of 7-8 years. Changes in the annual mean and percentiles of the daily 1-h maximum and other hour-based concentrations varied according to the compound and city type. Seasonal variations varied according to the compound, yet not with the city type. Both Seoul and Taegu exhibited lower O(3) concentrations in July compared to other summer months. There was a high degree of correlation between the daily 1- and 8-h maximum or daily mean concentrations of all compounds in both cities, with an R(2) of 0.66-0.90 at p<0.0001. It was indicated that for CO and O(3), the 8-h standard was more stringent than the 1-h standard, while for NO(2) and SO(2), the 1-h standard was more stringent than the 24-h standard. The correlation coefficients between the daily 1-h maximum and daily mean concentrations decreased as the maximum concentration values of NO(2), O(3 ), and SO(2) increased in the two cities. For all the target compounds, Seoul recorded a substantially higher frequency of days with concentrations above the relevant 1-, 8-, and 24-h standards compared to Taegu.  相似文献   

19.
A chemical analysis of suspended particulate matter (SPM) collected near the world famous Taj Mahal monument at Agra has been carried out. SPM samples collected on glass fibre filters were analysed for water-soluble sulphate, nitrate, chloride and ammonium ions. The data were derived from over 200 samples (each of 24 h), collected continuously during the winter periods (October through to March) of 1984-1985 and 1985-1986. The SO(4)(2-) and NO(3)(-) components are acidic in nature causing corrosion and effects on visibility, and so were studied in more detail. Mean values for SO(4)(2-) and NO(3)(-) derived from two-year data are 7.2 microg m(-3) and 8.2 microg m(-3), respectively. The SO(4)(2-)/SO(2) and NO(3)(-)/NO(2) ratiosobserved indicate faster conversion of SO(2) to SO(4)(2-) than NO(2) to NO(3)(-), the maximum levels being in January. Thus, both SO(4)(2-) and NO(3)(-) results appear to offer more promising indices of air quality than do SPM data alone.  相似文献   

20.
The effects of exposing plants of Dryopteris filix-mas (L.) Schott, Phyllitis scolopendrium (L.) Newman and Polypodium vulgare L. to 60 nl litre(-1) (122 microg m(-3)) NO(2) for 37 weeks were investigated in a closed chamber fumigation system. There was no effect of NO(2) on the numbers of fronds produced for any species at any time during the exposure period. However, at the end of the study, there was a lower dry weight yield of green shoots of D. filix-mas and P. scolopendrium and a higher yield of green shoots of P. vulgare for plants in the NO(2) treatment as compared to control plants. These differences in shoot dry weights were not accompanied by an effect of NO(2) exposure on total plant dry weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号