首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.  相似文献   

2.
Municipal sewage sludge is often used on arable soils as a source of nitrogen and phosphorus, but it also contains organic contaminants that may be leached to the ground water. Di(2-ethylhexyl)phthalate (DEHP) is a priority pollutant that is present in sewage sludge in ubiquitous amounts. Column experiments were performed on undisturbed soil cores (20-cm depth x 20-cm diameter) with three different soil types: a sand, a loamy sand, and a sandy loam soil. Dewatered sewage sludge was spiked with 14C-labeled DEHP (60 mg kg(-1)) and bromide (5 g kg(-1)). Sludge was applied to the soil columns either as five aggregates, or homogeneously mixed with the surface layer. Also, two leaching experiments were performed with repacked soil columns (loamy sand and sandy loam soil). The DEHP concentrations in the effluent did not exceed 1.0 microg L(-1), and after 200 mm of outflow less than 0.5% of the applied amount was recovered in the leachate in all soils but the sandy loam soil with homogeneous sludge application (up to 3.4% of the applied amount recovered). In the absence of macropore flow, DEHP in the leachate was primarily sorbed to mobilized dissolved organic macromolecules (DOM, 30.3 to 81.3%), while 2.4 to 23.6% was sorbed to mobilized mineral particles. When macropore flow occurred, this changed to 16.5 to 37.4% (DOM) and 36.9 to 40.6% (mineral particles), respectively. The critical combination for leaching of considerable amounts of DEHP was homogeneous sludge application and a continuous macropore structure.  相似文献   

3.
Phosphorus (P) leaching losses from manure applications may be of concern when artificial drainage systems allow for hydrologic short-cuts to surface waters. This study quantified P leaching losses from liquid manure applications on two soil textural extremes, a clay loam and loamy sand soil, as affected by cropping system and timing of application. For each soil type, manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring. Drain water was sampled at least weekly when lines were flowing, and outflow rate and total P content were determined. High P leaching losses were measured in the clay loam as soon as drain lines initiated flow after manure application. Flow-weighted mean P leaching losses on clay loam plots averaged 39 times higher (0.504 mg L(-1)) than those on loamy sand plots (0.013 mg L(-1)), and were above the USEPA level of concern of 0.1 mg L(-1). Phosphorus losses varied among application seasons on the clay loam soil, with highest losses generally measured for early fall applications. Phosphorus leaching patterns in clay loam showed short-term spikes and high losses were associated with high drain outflow rates, suggesting preferential flow as the main transport mechanism. Phosphorus leaching from manure applications on loamy sand soils does not pose environmental concerns as long as soil P levels remain below the saturation level.  相似文献   

4.
Timing of manure application affects N leaching. This 3-yr study quantified N losses from liquid manure application on two soils, a Muskellunge clay loam and a Stafford loamy sand, as affected by cropping system and timing of application. Dairy manure was applied at an annual rate of 93 800 L ha(-1) on replicated drained plots under continuous maize (Zea mays L.) in early fall, late fall, early spring, and as a split application in early and late spring. Variable rates of supplemental sidedress N fertilizer were applied as needed. Manure was applied on orchardgrass (Dactylis glomerata L.) in split applications in early fall and late spring, and early and late spring, with supplemental N fertilizer topdressed as NH4NO3 in early spring at 75 kg N ha(-1). Drain water was sampled at least weekly when lines were flowing. Three-year FWM (flow-weighted mean) NO3-N concentrations on loamy sand soil averaged 2.5 times higher (12.7 mg L(-1)) than those on clay loam plots (5.2 mg L(-1)), and those for fall applications on maize-cropped land averaged >10 mg L(-1) on the clay loam and >20 mg L(-1) on the loamy sand. Nitrate-N concentrations among application seasons followed the pattern early fall > late fall > early spring = early + late spring. For grass, average NO3-N concentrations from manure application remained well below 10 mg L(-1). Fall manure applications on maize show high NO3-N leaching risks, especially on sandy soils, and manure applications on grass pose minimal leaching concern.  相似文献   

5.
The interactive effects of soil texture and type of N fertility (i.e., manure vs. commercial N fertilizer) on N(2)O and CH(4) emissions have not been well established. This study was conducted to assess the impact of soil type and N fertility on greenhouse gas fluxes (N(2)O, CH(4), and CO(2)) from the soil surface. The soils used were a sandy loam (789 g kg(-1) sand and 138 g kg(-1) clay) and a clay soil (216 g kg(-1) sand, and 415 g kg(-1) clay). Chamber experiments were conducted using plastic buckets as the experimental units. The treatments applied to each soil type were: (i) control (no added N), (ii) urea-ammonium nitrate (UAN), and (iii) liquid swine manure slurry. Greenhouse gas fluxes were measured over 8 weeks. Within the UAN and swine manure treatments both N(2)O and CH(4) emissions were greater in the sandy loam than in the clay soil. In the sandy loam soil N(2)O emissions were significantly different among all N treatments, but in the clay soil only the manure treatment had significantly higher N(2)O emissions. It is thought that the major differences between the two soils controlling both N(2)O and CH(4) emissions were cation exchange capacity (CEC) and percent water-filled pore space (%WFPS). We speculate that the higher CEC in the clay soil reduced N availability through increased adsorption of NH(4)(+) compared to the sandy loam soil. In addition the higher average %WFPS in the sandy loam may have favored higher denitrification and CH(4) production than in the clay soil.  相似文献   

6.
Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles.  相似文献   

7.
Low-disturbance manure application methods can provide the benefits of manure incorporation, including reducing ammonia (NH3) emissions, in production systems where tillage is not possible. However, incorporation can exacerbate nitrate (NO3?) leaching. We sought to assess the trade-offs in NH3 and NO3? losses caused by alternative manure application methods. Dairy slurry (2006-2007) and liquid swine manure (2008-2009) were applied to no-till corn by (i) shallow (<10 cm) disk injection, (ii) surface banding with soil aeration, (iii) broadcasting, and (iv) broadcasting with tillage incorporation. Ammonia emissions were monitored for 72 h after application using ventilated chambers and passive diffusion samplers, and NO3? leaching to 80 cm was monitored with buried column lysimeters. The greatest NH3 emissions occurred with broadcasting (35-63 kg NH3-N ha?), and the lowest emissions were from unamended soil (<1 kg NH-N ha?1). Injection decreased NH-N emissions by 91 to 99% compared with broadcasting and resulted in lower emissions than tillage incorporation 1 h after broadcasting. Ammonia-nitrogen emissions from banding manure with aeration were inconsistent between years, averaging 0 to 71% that of broadcasting. Annual NO3? leaching losses were small (<25 kg NO3-N ha?1) and similar between treatments, except for the first winter when NO3? leaching was fivefold greater with injection. Because NO3? leaching with injection was substantially lower over subsequent seasons, we hypothesize that the elevated losses during the first winter were through preferential flow paths inadvertently created during lysimeter installation. Overall, shallow disk injection yielded the lowest NH3 emissions without consistently increasing NO3? leaching, whereas manure banding with soil aeration conserved inconsistent amounts of N.  相似文献   

8.
Drying of soil may increase the hydrophobicity of soil and affect the mobilization of colloids after re-wetting. Results of previous research suggest that colloid hydrophobicity is an important parameter in controlling the retention of colloids and colloid-associated substances in soils. We tested the hypothesis that air-drying of soil samples increases the hydrophobicity of water-dispersible colloids and whether air-drying affects the mobilization of colloid-associated heavy metals. We performed batch experiments with field-moist and air-dried (25 degrees C) soils from a former sewage farm (sandy loam), a municipal park (loamy sand), and a shooting range site (loamy sand with 25% C(org)). The filtered suspensions (<1.2 microm) were analyzed for concentrations of dissolved and colloidal organic C and heavy metals (Cu, Cd, Pb, Zn), average colloid size, zeta potential, and turbidity. The hydrophobicity of colloids was determined by their partitioning between a hydrophobic solid and a hydrophilic aqueous phase. Drying increased hydrophobicity of the solid phase but did not affect the hydrophobicity of the dispersed colloids. Drying decreased the amount of mobilized mineral and (organo-)mineral colloids in the sewage farm soils but increased the mobilization of organic colloids in the C-rich shooting range soil. Dried samples released less colloid-bound Cd and Zn than field-moist samples. Drying-induced mobilization of dissolved organic C caused a redistribution of Cu from the colloidal to the dissolved phase. We conclude that drying-induced colloid mobilization is not caused by a change in the physicochemical properties of the colloids. Therefore, it is likely that the mobilization of colloids in the field is caused by increasing shear forces or the disintegration of aggregates.  相似文献   

9.
10.
Phosphorus-enriched runoff from cropland can hasten eutrophication of surface waters. A soil P level exceeding crop needs due to long-term fertilizer and/or manure applications is one of several potential sources of increased P losses in runoff from agricultural systems. Field experiments were conducted at locations representative of three major soil regions in Wisconsin in corn (Zea mays L.) production systems to determine the effect of tillage, recent manure additions, soil P extraction method, and soil sampling depth (0-2, 0-5, and 0-15 cm) on the relationship between soil test P level and P concentrations in runoff. Runoff from simulated rainfall (75 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved phosphorus (DP), total phosphorus (TP), and sediment. The DP fraction of the TP concentration in runoff ranged from 5 to 17% among sites with most of the variation in TP due to varying sediment concentration on the well-drained silt loam soils and to soil test P level on the poorly drained silty clay loam soil. In 213 observations across a range of soils and managements, good relationships occurred between soil test P level and DP concentration in runoff for most of the tests and sampling depths used. Recent manure additions and high levels of surface cover from corn residue sometimes masked this relationship. The slope of DP relative to soil test P level was markedly higher on the silty clay loam soil than on the silt loam soils possibly due to soil permeability-infiltration rate differences. Agronomic soil P tests were as effective as environmentally oriented soil P tests for predicting DP concentrations in runoff.  相似文献   

11.
The leaching of colloidal phosphorus (P(coll)) contributes to P losses from agricultural soils. In an irrigation experiment with undisturbed soil columns, we investigated whether the accumulation of P in soils due to excess P additions enhances the leaching of colloids and P(coll) from sandy soils. Furthermore, we hypothesized that large concentrations of P(coll) occur at the onset of leaching events and that P(coll) mobilized from topsoils is retained in subsoils. Soil columns of different P saturation and depth (0-25 and 0-40 cm) were collected at a former disposal site for liquid manure and at the Thyrow fertilization experiment in northeastern Germany. Concentrations of total dissolved P, P(coll), Fe(coll), Al(coll), optical density, zeta potential, pH, and electrical conductivity of the leachates were determined. Colloidal P concentrations ranged from 0.46 to 10 micromol L(-1) and contributed between 1 and 37% to total P leaching. Large P(coll) concentrations leached from the P-rich soil of the manure disposal site were rather related to a large P-content of colloids than to the mobilization of additional colloids. Concentrations of colloids and P(coll) in leachates from P-poor and P-rich columns from Thyrow did not differ significantly. In contrast, accumulation of P in the Werbellin and the Thyrow soil consistently increased dissolved P concentrations to maximum values as high as 300 micromol L(-1). We observed no first-flush of colloids and P(coll) at the beginning of the leaching event. Concentrations of P(coll) leached from 40-cm soil columns were not smaller than those leached from 25-cm columns. Our results illustrate that an accumulation of P in sandy soils does not necessarily lead to an enhanced leaching of colloids and P(coll), because a multitude of factors independent from the P status of soils control the mobility of colloids. In contrast, P accumulation generally increases dissolved P concentrations in noncalcareous soils due to the saturation of the P sorption capacity. This indicates that leaching of dissolved P might be a more widespread environmental problem in areas with P-saturated sandy soils than leaching of P(coll).  相似文献   

12.
Methyl iodide (MeI) is a promising alternative to methyl bromide in soil fumigation. The pest-control efficacy and ground water contamination risks of MeI as a fumigant are highly related to its gas-phase distribution and leaching after soil application. In this study, the distribution and leaching of MeI in soil following shank injection and subsurface drip application were investigated. Methyl iodide (200 kg ha(-1)) was directly injected or drip-applied at a 20-cm depth into Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralfs) columns (12-cm i.d., 70-cm height) tarped with virtually impermeable film. Concentration profiles of MeI in the soil air were monitored for 7 d. Methyl iodide diffused rapidly after soil application, and reached a 70-cm depth within 2 h. Relative to shank injection, drip application inhibited diffusion, resulting in significantly lower concentration profiles in the soil air. Seven days after MeI application, fumigated soil was uncapped, aerated for 7 d, and leached with water. Leaching of MeI was significant from the soil columns under both application methods, with concentrations of >10 mug L(-1) in the early leachate. The leaching was greater following shank injection than drip application, with an overall potential of 33 g ha(-1) for shank injection and 19 g ha(-1) for drip application. Persistent residues of MeI remaining in soils after leaching were 50 to 240 ng kg(-1), and the contents were slightly higher following shank injection than drip application. The results suggest that fumigation with MeI may pose a risk of ground water contamination in vulnerable areas.  相似文献   

13.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   

14.
The large quantities of slurry and manure that are produced annually in many areas in which cattle are raised could be an important source of organic matter and nutrients for agriculture. However, the benefits of waste recycling may be partially offset by the risk of water pollution associated with runoff from the fields to which slurry or manure has been applied. In this paper, the effects of cattle manure application on soil erosion rates and runoff and on surface water pollution by faecal coliforms are analysed. Rainfall simulations at a rate of 70 mm h(-1) were conducted in a sandy loam soil packed into soil flumes (2.5m long x 1m wide) at a bulk density of 1400 kg m(-3), with and without cattle slurry manure applied on the surface. For each simulation, sediment and runoff rates were analysed and in those simulations with applied slurry, presumptive faecal coliform (PFC) concentrations in the runoff were evaluated. The application of slurry on the soil surface appeared to have a protective effect on the soils, reducing soil detachment by up to 70% but increasing runoff volume by up to 30%. This practice implies an important source of pollution for surface waters especially if rainfall takes place within a short period after application. The concentrations of micro-organisms (presumptive faecal coliforms (PFCs)) found in water runoff ranged from 1.9 x 10(4) to 1.1 x 10(6) PFC 100mL(-1), depending on the initial concentration in the slurry, and they were particularly high during the first phases of the rainfall event. The result indicates a strong relationship between the faecal coliforms transported by runoff and the organic matter in the sediment.  相似文献   

15.
Increased poultry production has contributed to excess nutrient problems in Atlantic Coastal Plain soils due to land application of poultry litter (PL). Aluminum sulfate [alum, Al(2)(SO(4))(3).14H(2)O] amendment of PL effectively reduces soluble phosphorus (P) in the PL; however, the effects of these litters when added to acidic, sandy soils are not well understood. The objective of this study was to investigate the efficacy of alum-amended poultry litter in reducing P release from three Delaware Coastal Plain soils: Evesboro loamy sand (Ev; excessively drained, mesic, coated Typic Quartzipsamments), Rumford loamy sand (Ru; well drained, coarse-loamy, siliceous, subactive, thermic Typic Hapludults), and Pocomoke sandy loam (Pm; very poorly drained, coarse-loamy, siliceous, active, thermic Typic Umbraquults). Long-term (25 d) and short-term (24 h) desorption studies were conducted, in addition to chemical extractions and kinetic modeling, to observe the changes that alum-amended versus unamended PL caused in the soils. The Ev, Ru, and Pm soils were incubated with 9 Mg ha(-1) of alum-amended or unamended PL. Long-term desorption (25 d) of the incubated material resulted in approximately 13.5% (Ev), 12.7% (Ru), and 13.3% (Pm) reductions in cumulative P desorbed when comparing soil treated with unamended and alum-amended PL. In addition, the P release from the soil treated with alum-amended litter was not significantly different from the control (soil alone). Short-term desorption (24 h) showed 7.3% (Ev), 15.4% (Ru), and 20% (Pm) reductions. The overall implication from this study is that the use of alum as a PL amendment is useful in coarse-textured soils of the Coastal Plain. With increased application of alum-amended PL, more significant decreases may be possible with little or no effect on soil quality.  相似文献   

16.
Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH)2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH)2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793,000 to 6500 mL-1. Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP.  相似文献   

17.
Addition of animal manure to soil can provide opportunity for Salmonella contamination of soil, water, and food. This study examined how exposure of hog manure-treated loamy sand and clay soils to different simulated seasonal temperature sequences influenced the length of Salmonella survival. A six-strain cocktail of Salmonella serovars (Agona, Hadar, Heidelberg, Montevideo, Oranienburg, and Typhimurium) was added to yield 5 log cfu/g directly to about 5 kg of the two soils and moisture adjusted to 60 or 80% of field capacity (FC). Similarly, the Salmonella cocktail was mixed with fresh manure slurry from a hog nursery barn and the latter added to the two soils at 25 g/kg to achieve 5 log cfu/g Salmonella. Manure was mixed either throughout the soil or with the top kilogram of soil and the entire soil volume was adjusted to 60 or 80% FC. Soil treatments were stored 180 d at temperature sequences representing winter to summer (-18, 4, 10, 25 degrees C), spring to summer (4, 10, 25, 30 degrees C), or summer to winter (25, 10, 4, -18 degrees C) seasonal periods with each temperature step lasting 45 d. Samples for Salmonella recovery by direct plating or enrichment were taken at 0, 7, and 15 d post-inoculation and thereafter at 15-d intervals to 180 d. Salmonella numbers decreased during application to soil and the largest decreases occurred within the first week. Higher soil moisture, manure addition, and storage in the clay soil increased Salmonella survival. Salmonella survived longest (> or = 180 d) in both soils during summer-winter exposure but was not isolated after 160 d from loamy sand soil exposed to other seasonal treatments. For all but one treatment decimal reduction time (DRT45d) values calculated from the first 45 d after application were < or = 30 d and suggested that a 30-d delay between field application of manure in the spring or fall and use of the land would provide reasonable assurance that crop and animal contamination by Salmonella would be minimized.  相似文献   

18.
Land application of manure is a common practice in the Upper Midwest of the United States. Recently, there have been concerns regarding the effect of this practice on water quality, especially when manure is applied during winter over frozen soils. A study undertaken on a Rozetta silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs) at Lancaster, WI, evaluated the effects of tillage and timing of manure application on surface and subsurface water quality. The daily scrape and haul liquid dairy manure was applied either in the fall (before snow) or in winter (over snow with frozen soil underneath) to be compared with no manure under two tillage systems (no-till and chisel-plowing). In this paper, we report results on the effects of the above treatments on mineral N leaching. Percolation and mineral N leaching during the nongrowing season were, respectively, 72 and 78% of the annual losses, mainly because of the absence of plant water and N uptake. Percolation was generally higher from no-till compared with chisel-plow but there was no significant effect of tillage on mineral N concentration of the leachate or mineral N losses via leaching. Mineral N leaching was statistically higher from the manure-applied vs. no-manure treatment, but there was no difference between winter-applied manure and no-manure treatments. There were significant tillage by manure interactions with fall manure application followed by chisel-plowing resulting in highest N leaching losses. Averaged over the two years, N leaching rates were 52, 38, and 28 kg N ha(-1) yr(-1) from fall-applied, winter-applied, and no-manure treatments, respectively. These results show that there is substantial N leaching from these soils even when no fertilizer or manure is applied. Furthermore, fall-applied manure followed by fall tillage significantly increases N leaching due to enhanced mineralization of both soil and manure organic N.  相似文献   

19.
Continuous N-based application of biosolids contributes to a gradual increase of trace elements and P in soils. The objectives of this study were to assess the accumulation and vertical transport of Cu, Zn, C, N, and P within the profile of two coastal plain soils. Liquid (6-8% total solids) biosolids were applied to an Acredale silt loam (fine silty, mixed, thermic typic Ochraqualfs) and Bojac loamy sand (coarse loamy, mixed, thermic typic Hapludult) annually from 1984 to 1998. The repeated applications supplied 70, 204, and 3823 kg ha(-1) of Cu, Zn, and P, respectively, to the Acredale and 81, 225, and 4265 kg ha(-1) of Cu, Zn, and P, respectively, to the Bojac. The total C and N contents were not different than background levels in the Bojac soil and were slightly higher in the Acredale soil 7 years after cessation of biosolids application. Phosphorus, Cu and Zn are still concentrated in the top 0.25 m of the Acredale soil. Enrichment of P, Cu, and Zn were detected to the deepest soil increment in the coarse-textured Bojac soil. Approximately 20 to 40% of the Cu and Zn applied in the biosolids could not be accounted, which was likely due to a combination of leaching and incomplete extraction. Excessive Mehlich 1-P concentrations and a high degree of P saturation were found in amended soil, raising the potential for P release to runoff or leaching water.  相似文献   

20.
There is some concern that antibiotic residues in land-applied manure may promote the emergence of antibiotic resistant bacteria in the environment. The goal of this study was to determine whether or not soil bound antibiotics are still active against bacteria. The procedure involved sorbing various amounts of tetracycline or tylosin on two different textured soils (Webster clay loam [fine-loamy, mixed, superactive, mesic Typic Endoaquolls] and Hubbard loamy sand [sandy, mixed, frigid Entic Hapludolls]), incubating these soils with three different bacterial cultures (an antibiotic resistant strain of Salmonella sp. [Salmonella(R)], an antibiotic sensitive strain of Salmonella sp. [Salmonella(S)], and Escherichia coli ATCC 25922), and then enumerating the number of colony forming units relative to the control. Incubation was done under both static and dynamic conditions. Soil-adsorbed antibiotics were found to retain their antimicrobial properties since both antibiotics inhibited the growth of all three bacterial species. Averaged over all other factors, soil adsorbed antimicrobial activity was higher for Hubbard loamy sand than Webster clay loam, most likely due to higher affinity (higher clay content) of the Webster soil for antibiotics. Similarly, there was a greater decline in bacterial growth with tetracycline than tylsoin, likely due to greater amounts of soil-adsorbed tetracycline and also due to lower minimum inhibitory concentration of most bacteria for tetracycline than tylosin. The antimicrobial effect of tetracycline was also greater under dynamic than static growth conditions, possibly because agitation under dynamic growth conditions helped increase tetracycline desorption and/or increase contact between soil adsorbed tetracycline and bacteria. We conclude that even though antibiotics are tightly adsorbed by clay particles, they are still biologically active and may influence the selection of antibiotic resistant bacteria in the terrestrial environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号