首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Depolymerization of polyethylene terephthalate (PET) is a promising technology for producing recycled monomers. Using a deep eutectic solvent (DES)-based catalyst, the PET glycolysis process produces bis-(2-hydroxyethylene terephthalate) (BHET). This recycled monomer reacts with isocyanate and forms polyurethane foam (PUF). The DES-based one-pot reaction is advantageous because it is a low-energy process that requires relatively lower temperatures and reduced reaction times. In this study, choline chloride/urea, zinc chloride/urea, and zinc acetate/urea based DESs were adopted as DES catalysts for glycolysis. Subsequently, the conversion of PET, BHET yield, and OH values were evaluated. Both filtered and unfiltered reaction mixtures were used as polyols for PUF polymerization after characterization of the acid and hydroxyl values of the polyols, as well as the NCO (–N=C=O) value of isocyanate. In the case of unfiltered reaction mixtures, PUF was obtained via a one-pot reaction, which exhibited higher thermal stability than PUF made from the filtered polyols. This outcome indicated that oligomeric BHET containing many aromatic moieties in unfiltered polyols contributes to the thermal stability of PUF. This environmentally friendly and relatively simple process is an economical approach for upcycling waste PET.

  相似文献   

2.
The purpose of this study was to explore ways to extend the chemical recycling of poly(ethylene terephthalate) (PET) as a valuable feedstock for chemical processes. First, PET wastes were depolymerised using a glycolysis method in the presence of sodium carbonate, which is considered to be a less environmentally damaging option for a catalyst. Good yields of the monomer bis(2-hydroxyethyl) terephthalate (BHET) were obtained (80 %). Second, to develop an economically viable recycling programme for the reclaimed BHET, the conversion of purified BHET into unsaturated polyester resins (UPR) was studied. The recovered monomer was thus polyesterified with maleic anhydride and subsequently mixed with styrene monomer to prepare UPRs. The resins were casted by a crosslinking reaction using methyl ethyl ketone peroxide and cobalt 2-ethylhexanoate as the initiator and catalyst, respectively. The polyesterification reaction was followed by gel permeation chromatography. The curing process was studied by differential scanning calorimetry and infrared spectroscopy. The cured resin was subjected to various characterisation methods in order to determine its chemical, physical and mechanical properties. Resins with suitable properties for commercial application were obtained.  相似文献   

3.
Poly (ethylene-terephthalate), (PET) bottles waste was chemically recycled by glycolysis and hydrolysis. The depolymerization processes were carried out in different time intervals from 5 to 360 min, in two different molar ratios of PET/EG, 1:5 and 1:18 and at different temperatures. The PET glycolysis leads to formation of bis(2-hydroxy-ethyl)terephthalate (BHET) monomer and PET oligomers with hydroxyl and carboxyl end groups while PET hydrolysis is followed by formation of monomers terephthalic acid (TPA) and ethylene glycol (EG). Fractions of monomers and oligomers were further characterized by FTIR spectroscopy and by differential scanning calorimetry (DSC). The results show that DSC is successful method to describe the different structures of oligomers formed during chemical recycling of PET.  相似文献   

4.
陈飞飞  王光辉  李伟  杨锋 《化工环保》2012,32(3):277-281
采用共沉淀法合成了镁铝水滑石并将其在不同温度下煅烧得到复合金属氧化物。将两者作为催化剂用于醇解聚对苯二甲酸乙二醇酯(PET)反应中。实验结果表明:复合金属氧化物的催化活性明显高于其前体,最佳煅烧温度为500℃;在催化剂与PET质量比为1.0%、醇解反应时间为50 min时,产物对苯二甲酸乙二醇酯(BHET)的产率可达到81%。镁铝水滑石煅烧后得到的复合金属氧化物是一种高效、环境友好型醇解PET催化剂,可以替代目前常用的均相催化剂。  相似文献   

5.
To apply PET depolymerization in supercritical methanol to commercial recycling, the benefits of supercritical methanol usage in PET depolymerization was investigated from the viewpoint of the reaction rate and energy demands. PET was depolymerized in a batch reactor at 573 K in supercritical methanol under 14.7 MPa and in vapor methanol under 0.98 MPa in our previous work. The main products of both reactions were the PET monomers of dimethyl terephthalate (DMT) and ethylene glycol (EG). The rate of PET depolymerization in supercritical methanol was faster than that of PET depolymerization in vapor methanol. This indicates supercritical fluid is beneficial in reducing reaction time without the use of a catalyst. We depicted the simple process flow of PET depolymerization in supercritical methanol and in vapor methanol, and by simulation evaluated the total heat demand of each process. In this simulation, bis-hydroxyethyl terephthalate (BHET) was used as a model component of PET. The total heat demand of PET depolymerization in supercritical methanol was 2.35 x 10(6)kJ/kmol Produced-DMT. That of PET depolymerization in vapor methanol was 2.84 x 10(6)kJ/kmol Produced-DMT. The smaller total heat demand of PET depolymerization in supercritical methanol clearly reveals the advantage of using supercritical fluid in terms of energy savings.  相似文献   

6.
Non-biodegradable plastic aggregates made of polycarbonate (PC) and polyethylene terephthalate (PET) waste are used as partial replacement of natural aggregates in mortar. Various volume fractions of sand 3%, 10%, 20% and 50% are replaced by the same volume of plastic. This paper investigates the physical and mechanical properties of the obtained composites. The main results of this study show the feasibility of the reuse of PC and PET waste aggregates materials as partial volume substitutes for natural aggregates in cementitious materials. Despite of some drawbacks like a decrease in compressive strength, the use of PC and PET waste aggregates presents various advantages. A reduction of the specific weight of the cementitious materials and a significant improvement of their post-peak flexural behaviour are observed. The calculated flexural toughness factors increase significantly with increasing volume fraction of PET and PC-aggregates. Thus, addition of PC and PET plastic aggregates in cementitious materials seems to give good energy absorbing materials which is very interesting for several civil engineering applications like structures subjected to dynamic or impact efforts. The present study has shown quite encouraging results and opened new way for the recycling of PC waste aggregate in cement and concrete composites.  相似文献   

7.
The huge increase in the generation of post-consumer plastic waste has produced a growing interest in eco-efficient strategies and technologies for their appropriate management and recycling. In response to this, PROQUIPOL Project is focused on developing, optimizing and adapting feedstock recycling technologies as an alternative for management for the treatment of complex plastic waste. Among the different plastic wastes studied, PROQUIPOL Project is working on providing a suitable treatment to the highly colored and complex multilayered post-consumer waste fractions of polyethylene terephthalate (PET) by chemical depolymerisation methods. Glycolysis and alkali hydrolysis processes have been studied with the aim of promoting the transformation of PET into the bis(2-hydroxyethyl) terephthalate monomer and terephthalic acid, respectively. In both cases operational conditions such as temperature, reaction time, catalyst to PET rate and solvent to PET rate have been considered to optimize product yield, achieving values near to 90 % and monomer purities over 95 % in both processes. This paper presents results obtained for each treatment as well as a simplified comparison of technical, economic and environmental issues.  相似文献   

8.
Chemical recycling of poly(ethylene terephthalate) PET waste in the melt state through alcoholysis with multifunctional alcohol—pentaerythrytol (PENTE)—was performed in a internal mixer Haake Rheomix 600, at 250 °C, 60 rpm, for 10 min, in presence of zinc acetate. The following PET:PENTE molar ratios 1:0; 1:0.16; 1:0.48 and 1:3.4 were studied. The chemical structure of the end-products was characterized by FT-IR. Thermal properties and X-ray diffractograms were also assessed. The esterification and alcoholysis reactions took place and were dependent on the molar ratio. The first one is dominant in compositions rich in PET leading to the formation of star-branching copolymer. The second one brings about the PET oligomerization and an oligoester named herein bis(tri-hydroxylneopentyl) terephthalate (BTHNPT) was obtained. The end-products have potential application as asphalt additive or adhesive.  相似文献   

9.
Chemical recycling of waste poly(ethylene terephthalate) (PET) using phosphoric acid–modified silica gel as a solid catalyst is reported. Advantageously, microwave irradiation was used to progress the depolymerization of PET. In this study, depolymerization of PET with a small amount of water is suggested as a suitable method. The depolymerized product, terephthalic acid was obtained and assigned by 1H NMR and FT-IR spectroscopy. Finally, over 90 % conversion to terephthalic acid was achieved when waste plastic bottles were treated with the method. This results confirm the importance of the microwave power technique as a promising recycling method for plastic bottles made from PET, resulting in monomer recovery in addition to substantial energy saving.  相似文献   

10.
Waste polyethylene terephthalate (PET) flakes were depolymerized by using propylene glycol (PG) in the presence of zinc acetate as catalyst. Glycolysis reaction products of waste PET obtained by using PET/glycol molar ratio 1/2. Two short oil alkyd resins of high acid values (30-40mgKOH/g) were prepared from phthalic anhydride (PA), glycerin (G), coconut oil fatty acids (COFA) and glycolyzed products of waste PET (PET-based alkyd resins) or glycols (PG) (reference alkyd resins). These alkyd resins were blended with 30%, 40%, and 50% of a commercial urea-formaldehyde, melamine-formaldehyde and urea-formaldehyde/melamine-formaldehyde mixture (1/1 weight ratio) and heated at 140 degrees C. The physical and chemical properties such as drying time, hardness, abrasion resistance, adhesion strength, water resistance, alkaline resistance, acid resistance, gelation time, and thermal oxidative degradation resistance (with thermogravimetric analysis, TGA) of these alkyd-amino resins were investigated. The properties of the waste PET-based resins were found to be compatible with the properties of the reference resins.  相似文献   

11.
In this investigation, all the techniques used in the chemical recycling of polyethylene terephthalate (PET) are critically reviewed according to the overall benefits together with the environmental surcharge that they cause. Those, which are consistent with the principles of sustainable development, are indicated. Experimental data are presented for the acid hydrolysis of PET and compared with previous results on the alkaline hydrolysis of PET with, or without, the use of a phase transfer catalyst. Overall material balances are carried out for the hydrolysis of PET. Finally, it can be postulated that recycling according to the scheme: is the only one within the framework of sustainable development. Therefore, the recycling of PET does not only serve as a partial solution to the solid waste problem but also contributes to the conservation of raw petrochemical products and energy.  相似文献   

12.
The sheer amount of disposable bottles being produced nowadays makes it imperative to identify alternative procedures for recycling them since they are non-biodegradable. This paper describes an innovative use of consumed plastic bottle waste as sand-substitution aggregate within composite materials for building application. Particularly, bottles made of polyethylene terephthalate (PET) have been used as partial and complete substitutes for sand in concrete composites. Various volume fractions of sand varying from 2% to 100% were substituted by the same volume of granulated plastic, and various sizes of PET aggregates were used. The bulk density and mechanical characteristics of the composites produced were evaluated. To study the relationship between mechanical properties and composite microstructure, scanning electron microscopy technique was employed. The results presented show that substituting sand at a level below 50% by volume with granulated PET, whose upper granular limit equals 5mm, affects neither the compressive strength nor the flexural strength of composites. This study demonstrates that plastic bottles shredded into small PET particles may be used successfully as sand-substitution aggregates in cementitious concrete composites. These new composites would appear to offer an attractive low-cost material with consistent properties; moreover, they would help in resolving some of the solid waste problems created by plastics production and in saving energy.  相似文献   

13.

Recovering fluorine from end-of-life products is crucial for the sustainable production and consumption of fluorine-containing compounds because fluorspar, an important natural resource for fluorine, is currently at a supply risk. In this study, we investigated the feasibility of chemically recycling a fluorine-containing photovoltaic (PV) backsheet for fluoropolymer recycling. Herein, a PV backsheet consisting of laminated polyethylene terephthalate (PET) and polyvinylidene fluoride (PVDF) was treated with different concentrations of sodium hydroxide (NaOH) to hydrolyze the PET layer to water-soluble sodium terephthalate (Na2TP) and to separate pure PVDF layer as a solid material. Optimized alkaline conditions (up to 10 M NaOH at 100 °C for 2 h) were determined, under which 87% of the PET layer could be decomposed without any significant deterioration of the PVDF layer. The hydrolysis kinetics of PET layer in NaOH could be explained by the modified shrinking-core model. Considering that the mass of end-of-life PV panels in Japan is estimated to increase to approximately 280,000 tons per year by 2036, PV backsheets are attractive candidates for fluoropolymer recycling, which can be effectively achieved using chemical recycling approach demonstrated in this study.

  相似文献   

14.
One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy.  相似文献   

15.
In this study, polyethylene terephthalate (PET) waste from post-consumer soft-drink bottles and crude glycerol from the biodiesel industry were used for the preparation of polyols and polyurethane foams. PET waste was firstly depolymerized by the glycolysis of diethylene glycol. The glycolyzed PET oligomers were then reacted with crude glycerol at different weight ratios to produce polyols via a series of reactions, such as esterification, transesterification, condensation, and polycondensation. The polyols were characterized by titration, viscometry, gel permeation chromatography (GPC), and differential scanning calorimetry. Subsequently, polyurethane (PU) foams were made via the reaction between the produced polyols and polymeric methylene-4,4′-diphenyl diisocyanate and were characterized by mechanical testing, scanning electron microscopy, and thermogravimetric analysis. Polyols from crude glycerol and their PU foams were also prepared to compare properties with those of polyols and PU foams from PET and crude glycerol. The influence of aromatic segments existing in glycolyzed PET and glycerol content on the properties of the polyols and PU foams was investigated. It was found that aromatic segments of polyols from glycolyzed PET helped increase their molecular weights and improve thermal stability of PU foams, while high glycerol content in polyols increased the hydroxyl number of polyols and the density and compressive strength of PU foams.  相似文献   

16.
Carbon fibers have been produced from hardwood lignin/synthetic polymer blend fibers. Hardwood kraft lignin was thermally blended with two recyclable polymers, poly(ethylene terephthalate) (PET) and polypropylene (PP). Both systems were easily spun into fibers. A thermostabilization step was utilized prior to carbonization to prevent fusion of individual fibers. For the lignin-based carbon fibers, careful control of heating rate was required. However, PET–lignin blend fibers can be thermostabilized under higher heating rates than the corresponding homofibers. Carbon fiber yield decreased with increasing incorporation of synthetic plastic. However, carbon fiber yield obtained for a 25% plastic blend fiber was still higher than that generally reported for petroleum pitch. Blend composition also affected surface morphology of the carbon fibers. Immiscible lignin–PP fibers resulted in a hollow and/or porous carbon fiber; whereas carbon fiber produced from miscible lignin–PET fibers have a smooth surface. Synthetic polymer blending also affected the mechanical properties of the fibers, especially MOE; lignin-based carbon fiber properties improved upon blending with PET.  相似文献   

17.
After studying the recycling collection system of polyethylene terephthalate (PET) bottles worldwide, the authors conducted an intercept survey in Beijing. Two separate questionnaires were issued, one questionnaire to PET bottle consumers and one to PET bottle recyclers. In this study, consumers are defined as people that consume PET-bottled beverages in their daily life. Recyclers were defined as those involved in the collection and recycling of PET bottles. These include scavengers, itinerant waste buyers, small community waste-buying depots, medium/large redemption depots, and recycling companies. In total, 580 surveys were completed, including 461 by consumers and 119 by recyclers. The authors found that consumption of PET bottles in Beijing was nearly 100,000 tonnes in 2012. Age, occupation, gender, and education were identified as significant factors linked to PET-bottled beverage consumption, while income was not a significant factor. 90% Of post-consumed PET bottles were collected by informal collectors (i.e., scavengers and itinerant waste buyers). The survey also found that nearly all PET bottles were reprocessed by small factories that were not designed with pollution control equipment, which allows them to offer higher prices for waste recyclable bottles. As Beijing is trying to build a formal recycling collection system for recyclables, subsidies should be given to the formal recycling sector rather than being charged land use fees, and attention should also be given to informal recyclers that make their living from the collection of recyclables. Informal and formal sectors may work together by employing the scavengers and itinerant waste buyers for the formal sectors. In addition to the recycling of PET bottles, concern should also be allocated to reduce consumption, especially among young people, as they, compared to other groups, have a stronger demand for PET-bottled beverages and will be the main body of society.  相似文献   

18.
Journal of Material Cycles and Waste Management - This paper shows a composite material fabricated from plastic waste of polyethylene terephthalate (PET) and polyurethane as binder, in a ratio of...  相似文献   

19.
Journal of Material Cycles and Waste Management - There is a growing interest in the depolymerization of polyethylene terephthalate (PET) waste for both environmental and economic reasons by...  相似文献   

20.
In order to upgrade polymer waste during recycling, separation should take place at high purity. The present research was aimed to develop a novel, alternative separation opportunity, where the polymer fractions were separated by centrifugal force in melted state. The efficiency of the constructed separation equipment was verified by two immiscible plastics (polyethylene terephthalate, PET; low density polyethylene, LDPE), which have a high difference of density, and of which large quantities can also be found in the municipal solid waste. The results show that the developed equipment is suitable not only for separating dry blended mixtures of PET/LDPE into pure components again, but also for separating prefabricated polymer blends. By this process it becomes possible to recover pure polymer substances from multi-component products during the recycling process. The adequacy of results was verified by differential scanning calorimetry (DSC) measurement as well as optical microscopy and Raman spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号