首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
对2015年3月—2016年2月邯郸市大气中的PM_(10)、PM_(2.5)和PM_(1.0)进行了在线监测,探讨了其质量浓度的变化特征,并分析了其质量浓度与风速、风向的关系。结果表明:邯郸市颗粒物质量浓度水平较高,β射线吸收法所监测的PM_(10_WET)、PM_(2.5_WET)和PM_(1.0_WET)年均浓度值分别为202.5,114.8,81.1μg/m~3,PM_(2.5_DRY)/PM_(10_WET)和PM_(2.5_WET)/PM_(10_WET)分别为0.58、0.70,PM_(1_DRY)/PM_(2.5_WET)和PM_(1_WET)/PM_(2.5_WET)分别为0.58、0.71,PM_(2.5)为PM_(10)中的主要组成,PM_(1.0)为PM_(2.5)中的主要组成。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)质量浓度冬季最高;PM_(10)、PM_(2.5)和PM_(1.0)日变化峰值为上午09:00左右,谷值为下午16:00左右,扬沙、降雨,霾和春节不同条件下PM_(10)、PM_(2.5)和PM_(1.0)差异明显。邯郸市PM_(10)、PM_(2.5)和PM_(1.0)的浓度高值主要分布在风向0°~100°和175°~225°、风速小于1 m/s的情况下。  相似文献   

2.
为准确掌握垫江县城区大气环境中细颗粒的污染状况,选择2016年9月1日—2017年2月28日大气自动观测站的数据研究分析,结果表明:垫江县城区大气环境中PM_(10)和PM_(2.5)的平均质量浓度分别为79mg/m~3和68mg/m~3,PM_(10)的月平均质量浓度均大于PM_(2.5),PM_(2.5)占PM_(10)的比例在84.6%~90.0%。多元分析结果可以看出,大气环境中的PM_(10)和PM_(2.5)具有相类似来源,气象条件对垫江县城区大气颗粒物污染影响较大。HYSPLIT轨迹模型分析表明,秋冬季节大气重污染时段,垫江县城区大气环境中颗粒物来源受到西南和西北气团影响较大。  相似文献   

3.
乌鲁木齐市PM_(2.5)和PM_(2.5~10)中碳组分季节性变化特征   总被引:2,自引:0,他引:2  
2011年1月至12月在乌鲁木齐市区用膜采样法采集了大气PM_(2.5)和PM_(2.5~10)样品,并利用热光/碳分析仪测定了其中有机碳(OC)和元素碳(EC)的质量浓度.通过OC与EC的粒径分布特征、比值和相关性的分析,初步分析了乌鲁木齐市大气可吸入颗粒物中碳质气溶胶污染特征,并用OC/EC比值法估算了二次有机碳(SOC)的浓度.结果表明,PM_(2.5)和PM_(2.5~10)的年平均质量浓度分别为92.8μg/m~3和64.7μg/m~3.PM_(2.5)中OC和EC的年平均浓度分别为13.85μg/m~3和2.38μg/m~3,PM_(2.5~10)中OC和EC的年平均浓度分别为2.63μg/m~3和0.57μg/m~3.OC和EC四季变化趋势基本一致,季浓度最高.碳组分主要集中于PM_(2.5)中,OC/EC比值范围为3.62~11.21.夏季和秋季的PM_(2.5)和PM_(2.5~10)中OC和EC的相关性较好(R20.65).估算得出的PM_(2.5)和PM_(2.5~10)中SOC的估算浓度为2.31~11.98μg/m~3和0.38~1.49μg/m~3.  相似文献   

4.
于2016年4月、7月、10月和2017年1月利用2台中流量分别在徐州市不同功能区,即生活区、工业区和旅游区采样大气中的细颗粒物(PM_(2.5))样品,测定PM_(2.5)质量浓度及其化学组分(含碳组分、水溶性离子和无机元素),结合化学质量平衡模型(CMB),对PM_(2.5)进行来源解析。研究结果表明:徐州市PM_(2.5)污染的年平均浓度维持在65μg/m~3左右,超过国家环境空气质量标准(GB3095-2012)二级标准(35μg/m3)的0.95倍。冬季全市的PM_(2.5)平均浓度最高,为103.6μg/m~3。根据CMB模型结果,全年PM_(2.5)来源解析,煤烟尘的分担率最高,达23.4%;其次是硫酸盐,达20.5%;硝酸盐的分担率占第三位,为18%,机动车尾气尘和城市扬尘分别为12.3%和11.4%,其他各源类的分担率均小于5%。  相似文献   

5.
城市地区PM_(2.5)周末效应的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用2014年全国78个城市497个环境监测站的实时观测数据,分析了2014年颗粒物(PM_(2.5)和PM_(10)和污染气体(包括SO_2、NO_2、CO和O_3)的分布特征并初步探讨了城市地区周末与工作日PM_(2.5)浓度的变化规律。2014年78个城市PM_(2.5)年均浓度值为71.9μg·m~(-3),华北地区PM_(2.5)年均浓度值在80~120μg·m~(-3),长三角地区PM_(2.5)的年均值在40~60μg·m~(-3)。污染气体相对于颗粒物更多的受到当地排放的影响。发现典型城市地区如北京、上海、广州、成都和西安等存在周末污染物浓度比工作日低的"PM_(2.5)周末效应",其中北京的周末效应最明显,对北京的周末效应进行初步分析发现周末与工作日机动车排放的变化是导致北京周末效应的主要原因。  相似文献   

6.
2015年7月~2016年3月期间在广西玉林市3个空气监测点位共采集环境大气颗粒物PM_(10)样品218份,PM_(2.5)样品202份,利用多波段热/光碳分析仪分析其颗粒物中有机碳和(OC)和元素碳(EC)浓度水平、时空变化、污染特征及可能来源.结果表明,玉林市PM_(10)中OC和EC质量浓度分别为10.99μg·m~(-3)和5.11μg·m~(-3);PM_(2.5)中OC和EC质量浓度分别为7.51μg·m~(-3)和4.70μg·m~(-3).3个监测点位大气中PM_(10)和PM_(2.5)冬季的OC和EC浓度水平均高于其他季节,PM_(10)、PM_(2.5)中OC和EC的相关性较好,R2分别为0.58和0.60(P均小于0.01).应用最小OC/EC比值法对二次有机碳(SOC)含量进行了估算,冬季大气PM_(10)和PM_(2.5)中SOC平均质量浓度分别为14.50μg·m~(-3)和6.74μg·m~(-3),高于其他季节.PM_(10)和PM_(2.5)中SOC/OC比值均0.5,玉林市大气中粗细颗粒物均以SOC为主.夏季PM_(10)和PM_(2.5)中SOC/OC分别为80.6%和77.7%,为四季最高值,与夏季温度较高、光照强烈、有利于光化学反应将OC转化为SOC有关.  相似文献   

7.
通过对阜康市2015年1个区控点的PM_(2.5)和PM_(10)的连续自动监测数据分析得出:2015年阜康市大气颗粒物中PM_(2.5)、PM_(10)浓度日均值和小时值的最大值均出现在4月,日均值均超过了环境空气质量标准的二级标准限值;月均值最大值均出现在12月;PM_(2.5)的年均值超过了环境空气质量标准的二级标准限值;PM_(2.5)和PM_(10)冬季的日变化浓度高于其他三季,夏季最低。超标天数高值出现在1、2、11、12月,PM_(2.5)的污染程度比PM10严重;PM_(2.5)和PM_(10)的比值1、11、12月较大。  相似文献   

8.
2013年6月10—25日在河北保定市固城镇运用大流量采样器进行每3小时1次PM_(2.5)样品采集,对其进行有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、水溶性有机氮(WSON)、水溶性总氮(WSTN)、吸湿增长因子、吸光度以及无机离子分析,探讨其浓度、组成、吸湿性能与吸光性的变化特征。结果表明:采样期间固城镇PM_(2.5)中WSON平均浓度为5.0±4.0μg?m~(-3),最高浓度达15μg?m~(-3);污染期WSON为6.9±3.9μg?m~(-3),是清洁期的四倍。整个采样期间WSON与、和呈强线性相关(R~20.89),污染天阳阴离子当量比值F=1.01,清洁天F=1.45,表明污染期颗粒物酸性增强有利于气态有机胺等WSON通过酸碱中和转移到颗粒相。不同相对湿度下水溶性组分的吸湿增长因子(Gf)测量结果显示:[WSOC+WSON]/离子的比值越大,吸湿增长因子越小,表明与无机离子相比,水溶性有机物吸湿性能较低。固城夏季大气PM_(2.5)中WSOC在365 nm波长下质量吸收效率(MAE)均值为0.52 m~2?g~(-1),表明WSOC对PM_(2.5)整体消光效应具有重要贡献。  相似文献   

9.
该研究选取北京大兴南海子公园植被区与亦庄非植被区PM_(2.5)数据进行研究,对比分析植被区与非植被区PM_(2.5)质量浓度日变化、月变化和年变化特征,典型天气下的PM_(2.5)质量浓度变化。结果表明:植被区PM_(2.5)质量浓度整体上低于非植被区,二者日变化均呈典型的双峰曲线,白天低,夜间高,最小值出现在下午15:00左右;从不同月份看,PM_(2.5)质量浓度最高值出现在冬季的1月、2月,最低值出现在6月、8月,整体表现为冬季月份明显高于其余月份;气温、降雨和大风均与PM_(2.5)浓度呈负相关,晴天时,温度较高,有利于PM_(2.5)浓度降低;降雨有利于空气颗粒物沉降,有效清除大气PM_(2.5)污染,降低其浓度;大风天气会增加大气环流,有助于颗粒物在大气中扩散,使PM_(2.5)不易滞留,从而导致浓度降低。降雨和大风均能导致PM_(2.5)污染降低,且城市森林植被对于PM_(2.5)有明显降低作用。  相似文献   

10.
为了了解太原市PM_(2.5)、PM_(10)的污染水平变化情况及其相关关系,本文基于太原市颗粒物自动监测数据,对太原市2015年12月-2016年11月PM_(2.5)、PM_(10)质量浓度进行分析。分析发现:PM_(2.5)和PM_(10)日均质量浓度变化幅度较大,但其变化趋势非常相似;PM_(2.5)和PM_(10)月均质量浓度均超过年均二级标准,特别是秋季最为严重;PM_(2.5)、PM_(10)小时平均质量浓度呈双峰现象;ρ(PM_(2.5))与ρ(PM_(10))相关系数为0.9371,ρ(PM_(2.5))/ρ(PM_(10))在0.5-0.6之间出现的频率最高达30.33%。  相似文献   

11.
2014年在吉林市设立7个大气PM_(2.5)采样点,分采暖季和非采暖季分别采样分析了吉林市城区大气颗粒物污染特征和可能来源。结果表明:吉林市大气颗粒物以PM_(2.5)为主,PM_(2.5)年均值65μg/m3,超过国家二级标准限值86%,PM_(2.5)/PM10的年平均值为61%;PM_(2.5)中,休闲生活区各个时间段金属元素浓度相对较低,工业混合区浓度较高;非金属离子SO2-4、NH+4、NO-3、Cl-是PM_(2.5)水溶性离子的主要成份,其和占PM_(2.5)质量的13.31%,在采暖期浓度质量全部高于非采暖期;采暖期OC和EC来源基本相同,来源于机动车尾气、燃煤和生物质燃烧等,在非采暖期OC和EC来源差异性较大,主要来源于机动车尾气和工业燃煤等。  相似文献   

12.
不同空气质量等级下环境空气颗粒物及其碳组分变化特征   总被引:2,自引:2,他引:0  
为研究不同空气质量等级下环境空气颗粒物及其碳组分变化特征,于2016年3月在廊坊市对环境空气中PM_(10)、PM_(2.5)和PM1质量浓度及PM_(2.5)中碳组分质量浓度进行了在线监测.结果表明,监测期间廊坊市PM_(10)、PM_(2.5)和PM1质量浓度较高,其分别为204.1、107.9和87.8μg·m~(-3),日变化趋势呈双峰型分布.总体来说,当空气质量越好,PM_(10)、PM_(2.5)、PM1及其碳组分(OC、EC、SOC和POC)质量浓度越低,PM1/PM_(2.5)、PM1/PM_(10)和PM_(2.5)/PM_(10)比值越小.但"中度污染"时,PM_(10)质量浓度最高,且PM1/PM_(10)和PM_(2.5)/PM_(10)达到谷底值;同时OC质量浓度比"轻度污染"略低,而明显低于"重度污染",且主要出现在13:00~23:00,表明"中度污染"时细颗粒物和超细颗粒物占比下降,与其对应的首要污染物相一致.此外,OC/EC比值大于2.0,通过最小OC/EC比值法估算PM_(2.5)中SOC和POC,其浓度均值分别为12.2μg·m~(-3)和5.0μg·m~(-3).  相似文献   

13.
邯郸市大气PM_(2.5)成分空间分布研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘卫  马笑  王丽涛  马思萌  魏哲  张城瑜 《环境工程》2017,35(10):105-109
为研究邯郸市2015年PM_(2.5)的污染状况,采用河北工程大学监测站全年PM_(2.5)浓度和气象在线监测数据以及4个代表月4个站点离线采样成分数据,分析了PM_(2.5)的浓度水平与气象要素的关系以及其化学组分特征。结果表明:PM_(2.5)的年均浓度为91.14μg/m~3,最高达到706.56μg/m~3;不同相对湿度条件下,PM_(2.5)浓度对邯郸地区能见度有较大影响。此外,邯郸静风频率较大,全年东南风风速较小,PM_(2.5)污染相对更加严重;PM_(2.5)中主要化学成分为SO_4~(2-)、NO_3~-和NH_4~+、OC和EC,4个站点采样无显著差异性。  相似文献   

14.
运用Models-3/CMAQ模式系统,模拟分析了2014年11月3~11日APEC会议期间北京市PM_(2.5)污染的时空分布特征,并利用过程分析工具IPR研究了会期两次短时间污染过程(4日13:00~5日12:00和10日13:00~11日12:00)中各种大气物理化学过程对城区官园和郊区定陵两个代表性站点近地面PM_(2.5)生成的贡献.结果表明,CMAQ模型合理地再现了北京市PM_(2.5)的浓度水平和时间变化.北京地区4日和10日发生不利于污染物扩散的气象条件,导致PM_(2.5)小时浓度出现高值(分别为188,124μg/m~3),但受减排措施和冷高压的作用,PM_(2.5)高值维持时间较短.4日13:00~5日12:00,水平传输是官园和定陵站点PM_(2.5)的主要贡献者,贡献率分别为49.6%和90.9%.此次污染过程北京地区受南部污染传输影响较强.10日13:00~11日12:00,官园站点PM_(2.5)主要来自源排放在本地的积累(78.8%),定陵站点PM_(2.5)主要来自较弱的水平传输(93.9%).此次过程体现出更加明显的局地性污染特征.两次过程中,PM_(2.5)的主要去除途径均为垂直传输.  相似文献   

15.
利用郑州城区9个国控监测点位PM_(10)、PM_(2.5)的日监测数据,研究2013~2016年间郑州城区大气颗粒物质量浓度变化特征及其对气象因素的响应。结果表明,2013~2016年间郑州城区环境空气污染总体状况改善趋势较为显著,重度及以上的污染天数占全年有效天数的比例逐年降低,PM_(10)、PM_(2.5)浓度逐年下降;PM_(10)和PM_(2.5)浓度月均值变化基本一致,浓度变化均呈"U"型分布。PM_(10)和PM_(2.5)质量浓度变化具有明显的季节性特征,冬季其质量浓度最高,春季和秋季次之,夏季最低。选取气温、气压、风速、相对湿度和降水量等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM_(10)、PM_(2.5)浓度的影响。相关性分析结果表明,与PM_(10)、PM_(2.5)浓度显著相关的气象因素存在季节性差异,风速、相对湿度和降雨量是影响郑州城区大气颗粒物质量浓度的主要气象因子。  相似文献   

16.
收集PM_(2.5)实时监控网提供的2015年春季宝鸡市大气污染物浓度的实时数据,分析宝鸡市各监测点大气污染物PM_(2.5)、PM_(10)、SO_2、NO_2的日均值和月均值浓度变化特征以及各污染物的负荷系数。结果表明:各监测点大气污染物月平均浓度3—5月呈下降趋势,但整体的空气质量状况有待进一步提高;宝鸡市大气颗粒物呈区域性污染,各监测点之间的差距较小,而污染气体SO_2和NO_2具有点状污染特征;4种主要的大气污染物中,PM_(2.5)和PM_(10)的贡献率超过一半以上,但SO_2和NO_2同样不可忽视。  相似文献   

17.
典型时段西南地区PM_(2.5)及组分污染特征   总被引:2,自引:2,他引:0       下载免费PDF全文
洪沁  常宏宏 《环境工程》2018,36(4):108-112
选取西南地区为采样点,于2015年非重污染和重污染时期对环境PM_(2.5)进行采样,并对PM_(2.5)、水溶性离子和碳质组分的污染特征进行分析。结果显示:重污染与非重污染天PM_(2.5)质量浓度分别为(204.8±47.0)μg/m~3和(66.8±23.1)μg/m~3。重污染天气下SO_4~(2-)、NO_3~-和NH_4~+浓度分别是非重污染天气下的3.5,4.2,3.4倍,SIA浓度占PM_(2.5)的比例可高达42.2%。重污染期间OC和EC浓度分别是非重污染期间的4.8,2.7倍,SOC浓度在非重污染和重污染期间分别为(3.2±1.6),(25.6±15.2)μg/m~3,OC、EC较低的相关性也反映出重污染期间碳质组分来源的复杂性。  相似文献   

18.
根据2015年1—12月深圳市城区11站点PM_(2.5)小时浓度监测数据,探讨了深圳市PM_(2.5)浓度的时空分布特征。结果显示:监测期间深圳市城区PM_(2.5)平均浓度为29.8μg/m~3,PM_(2.5)平均浓度整体呈现出:冬季>秋季>春季>夏季的特征,PM_(2.5)质量浓度日变化整体呈现出双峰型分布,午后12:00—16:00浓度较低。空间分布上,年均浓度从东南至西北方向依次升高,梯度特征明显。PM_(2.5)浓度与PM_(10)呈高度相关,与SO_2、NO_2、CO呈显著正相关,与O_3呈实相关。相邻城市间空气污染物浓度呈现出一定的相关性,区域污染突出。建立的PM_(2.5)回归统计模型对深圳市2015年PM_(2.5)临近预报的级别准确率在70%以上,能较好地反映PM_(2.5)浓度变化趋势。  相似文献   

19.
基于2000年、2003年、2006年、2009年、2014年的遥感影像提取不透水表面数据以及相应年份的PM_(2.5)质量浓度估算值.以不透水表面覆盖率(ISC)为城市化指标来分析城市化对PM_(2.5)质量浓度的影响,分别从城市、县区尺度探讨城市扩张对PM_(2.5)污染时空分布及演变的影响机制,定量研究二者相互关系;以京津冀地区为例,其ISC从2000年的0.7%增长到2014年的1.5%,而PM_(2.5)浓度从45.7μg/m~3飙升到77.3μg/m~3.根据2000与2014年的PM_(2.5)浓度差值,把京津冀地区划分为轻度(0~9.9μg/m~3)、中度(10~29.9μg/m~3)、重度(30~49.9μg/m~3)、严重(50~77μg/m~3)污染区域,相应的不透水表面增长率分别为43.3%、110.5%、165.5%和208.3%.严重污染区域位于北京-廊坊-天津-唐山(沿高速公路G1)和北京-保定-石家庄-邢台-邯郸(沿高速公路G4),伴随着较高的不透水面增长率(208.3%).同时,在2000~2014年期间,京津冀地区ISC空间分布与PM_(2.5)污染空间分布高度一致,以太行山和燕山山脉为界的东南地区的不透水表面增长率为160.0%,显著高于西北地区的增长率50%,同时东南地区的PM_(2.5)浓度增长值45.5μg/m~3也显著高于西北地区的17.0μg/m~3.此外,把京津冀地区174个乡镇按照其ISC划分为5个级别:松散型(0~4.9%)、轻度紧凑型(5%~9.9%)、紧凑型(10%~14.9%)、密集型(15%~24.9%)、高度密集型(25%),乡镇数量分别为42、35、52、34、11,对应的PM_(2.5)浓度均值分别为(42.7±10.5)、(79.9±11.9)、(95.6±15.4)、(99.1±10.8)、(115.3±9.2)μg/m~3.其中松散型乡镇的空气质量较好,而严重雾霾笼罩在高度密集型的乡镇中.结果表明当乡镇ISC为5%和25%时,对区域PM_(2.5)质量浓度带来剧烈的增长.当ISC5%时,PM_(2.5)浓度发生了激烈增长,其比5%的乡镇高了87.2%.当ISC25%时,其PM_(2.5)浓度飙升到(115.3±9.2)μg/m~3,大约是5%乡镇的3倍.结论表明,在城市化进程中,不透水表面扩张对PM_(2.5)污染的加剧带来严重影响,不透水表面扩张应该成为城市空气污染一个不可忽视的影响因素之一.  相似文献   

20.
文章通过分析沈阳市2014~2017年的环境监测、气象观测、死因监测等数据,利用调整过的广义相加模型,研究了沈阳市大气PM_(2.5)浓度与呼吸系统人群死亡率之间的关联关系;基于概率风险的基本原理,评估了当前沈阳市面临的大气PM_(2.5)污染风险。结果显示,沈阳市大气PM_(2.5)浓度处于36~75μg/m~3区间时,污染风险值最高。根据风险评估结果,文章从政府和公众的角度,提出了沈阳市大气PM_(2.5)污染风险应对措施建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号