首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biodegradable packaging has high potential to help solve the crisis of non-biodegradable plastic waste causing an increase in the footprint of landfills. However, more research needs to be executed to develop a larger assortment of biodegradable plastics for numerous applications and to make them more economical to manufacture. This paper discusses the design and validation of an automated composting system (AMUCS) that fits the requirements of the American Society for Testing and Materials (ASTM) 5338-11 standard. The results of the experiments show that the AMUCS was able to create and maintain the conditions for biodegradation of biodegradable polymers in compost using microcrystalline cellulose. The biodegradation caused by the composting environment was observed visually with the naked eye and on the micro scale with an environmental scanning electron microscope. The magnitude of biodegradation was measured by calculating the carbon metabolized from the samples. The carbon metabolized from the three compost replicates was consistent and linear, and there was only an 8 % difference between the non-biodegradable low density polyethylene and the compost. For the biodegradation study according to ASTM D 5338-11, the experiment was validated with the use of cellulose as a reference material. Under controlled composting conditions, the mineralization of microcrystalline cellulose yielded 72.05 %, which is slightly higher than the 70 % mineralization requirement.  相似文献   

2.
Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.  相似文献   

3.
The critical review of norms and standards and corresponding tests to determine the compostability of biodegradable plastics, possibly applicable also to biodegradable agricultural plastics, shows that many norms concerning testing and labelling of compostable plastics have been established at the international level. Some of them are about plastic materials, some others are about products like packaging. The media and conditions of testing cover mainly the conditions designed for industrial composting facilities, and only a few concern home composting conditions. Considering that the end of life management of biodegradable agricultural plastic products will be done at the farm to reduce the management of the waste and also its cost, only a few of these norms are considered to be suitable for adaptation to cover also biodegradable agricultural plastic products. The biodegradability validation criteria under composting conditions, such as the threshold percentage of biodegradation and disintegration, the time and temperature, and the ecotoxicity, are presented for the main norms and standard testing methods. Based on these different norms and their content, a list of specs and technical requirements that could be adapted to meet farm composting conditions for agricultural compostable plastics is proposed. These requirements may be used as criteria for the establishment of a new integrative norm for agricultural compostable plastics.  相似文献   

4.
Oxidatively degradable polyethylene is finding widespread use, particularly in applications such as single use packaging and agriculture. However, the key question which still remains unanswered is the ultimate fate and biodegradability of these polymers. During a short-time frame only the oxidized low molecular weight fraction will be amenable to significant biodegradation. The short-time frame biodegradation potential of different LDPE-transition metal formulations was, thus, explored through a simple chemical extraction of oxidized fraction. In addition the effectiveness of different transitions metals was evaluated by comparing the extractable fractions. Blown LDPE films modified with different transition metal based pro-oxidants were thermo-oxidized at 60 °C over extended periods. The structural changes occurring in the polymer were monitored and the oxidized degradation products formed as a result of the aging process were estimated by extractions with water and acetone. The extractable fraction first increased to approximately 22 % as a result of thermo-oxidative aging and then leveled off. The extractable fraction was approximately two times higher after acetone extraction compared to extraction with water and as expected, it was higher for the samples containing pro-oxidants. Based on our results in combination with existing literature we propose that acetone extractable fraction gives an estimation of the maximum short-term biodegradation potential of the material, while water extractable fraction indicates the part that is easily accessible to microorganisms and rapidly assimilated. The final level of biodegradation under real environmental conditions will of course be highly dependent on the specific environment, material history and degradation time.  相似文献   

5.
Eight kinds of biodegradable plastics were compared for their degradability in controlled laboratory composting conditions. A thin film of each plastic was mixed into the composting material, and weight-loss degradability was calculated from the weight changes of the film during composting. It was found that weight-loss degradability strongly depended on the specific kind of biodegradable plastic; two were very high, four moderate, and the remaining two very slight. The most easily degradable plastic degraded by as much as 81.4% over 8 days of composting. By comparing the weight-loss degradability with ultimate degradability, which is defined as a molar ratio of carbon loss as CO2 to the carbon contained in the biodegradable plastic, the order of the ease of degradation of the biodegradable plastics differed. Received: February 7, 2000 / Accepted April 14, 2000  相似文献   

6.
Because environmental pollution caused by plastic waste is a major problem investigations concerning biodegradable packaging are important and required. In this study, the biodegradation of PCL composite films with organic (glycerol monooleate and oleic acid) and inorganic additives (organo nano clay) was investigated to understand which additive and the amount of additive was more effective for biodegradation. The relationship between the degree of crystallinity and the effect of additives on the biodegradability of polycaprolactone (PCL) was examined. PCL composite films were prepared using organo nano clay (0.1–0.4–1–3 wt%) and oleic acid (1–3–5 wt%) or GMO (1–3–5 wt%). The 35 films prepared with PCL (P), clay (C), oleic acid (O), or glycerol monooleate (G) are coded as P_C#wt%_O (or G)#wt%. The composite films, P_C0.4_O5 contains 0.4 wt% clay and 5 wt% oleic acid and the P_C3_G1 contains 3 wt% clay and 1 wt% glycerol monooleate. The biodegradation of PCL films in simulated soil was studied for 36 months. The films were periodically removed from the simulated soil and film thicknesses, weight losses, visual changes, crystal structures, and a functional group analyses were performed. PCL composite films are separated into three groups, depending on degradation time, (1) films that degraded before 8 months (fast degradation), (2) films that degraded around 24 months (similar to neat PCL), and (3) films that take longer to degrade (slow degradation). The films in the first group are PCL films with 1 and 3 wt% clay additive and they begin to biodegrade at the 5th month. However, a composite film of PCL with only 0.4 wt% clay and 5 wt% GMO addition has the shortest degradation time and degraded in 5 months. The films in the last group are; P_G3, P_G5, P_C0.1, P_C0.1_O1, and P_C0.1_O5 and they took around 30 months for biodegradation. It was observed that increasing the organo nanoclay additive increases the biodegradability by disrupting the crystal structure and causing a defective crystal formation. The addition of GMO with organo nano clay also accelerates biodegradation. The addition of organo nano clay in an amount as small as 0.1 wt% acts as the nucleating agent, increases the degree of crystallinity of the PCL composites, and slows the biodegradation period by increasing the time.  相似文献   

7.
With the advent of recently promulgated Government regulations on plastics in Mauritius, a study was initiated to examine the biodegradability of two different types of plastic, namely Willow Ridge Plastics - PDQ-H additive (Plastic A) and Ecosafe Plastic - TDPA additive (Plastic B) under controlled and natural composting environments. The results obtained from the controlled composting environment showed that the cumulative carbon dioxide evolution for Plastic A was much higher than that for Plastic B. Plastic A therefore showed a higher level of biodegradation in terms of CO2 evolution than Plastic B. However, from the regression analysis, it was found that the level of CO2 varying with time fitted the sigmoid type curves with very high correlation coefficients (R2 values: 0.9928, 0.9921 and 0.9816, for reference material, inoculum and Plastic A, respectively). The corresponding F-values obtained from the ANOVA analysis together with significance levels of p<0.05 indicated that the three treatments analysed in the biodegradability experiment were significant. The other experiment was undertaken to observe any physical change of Plastics A and B as compared to a reference plastic, namely, compostable plastic bag (Mater-Bi product-Plastic C), when exposed to a natural composting environment. Thermophilic temperatures were obtained for about 3-5 days of composting and the moisture content was in the range of 60-80% throughout the degradation process. It was observed that after 55 days of composting, Plastic C degraded completely while Plastic A and Plastic B did not undergo any significant degradation. It can be concluded that naturally based plastic made of starch would degrade completely in a time frame of 60 days, whereas plastics with biodegradable additive would require a longer time.  相似文献   

8.
The performance, the degradability in soil and the environmental impact of biodegradable starch-based soil mulching and low tunnel films were assessed by means of field and laboratory tests. The lifetime of the biodegradable mulches was 9 months and of the biodegradable low-tunnel films 6 months. The radiometric properties of the biodegradable films influenced positively the microclimate: air temperature under the biodegradable low tunnel films was 2 °C higher than under the low density polyethylene films, resulting in an up to 20% higher yield of strawberries. At the end of the cultivation period, the biodegradable mulches were broken up and buried in the field soil together with the plant residues. One year after burial, less than 4% of the initial weight of the biodegradable film was found in the soil. According to ecotoxicity tests, the kinetic luminescent bacteria test with Vibrio fischeri and the Enchytraeus albidus ISO/CD 16387 reproduction potential, there was no evidence of ecotoxicity in the soil during the biodegradation process. Furthermore, there was no change in the diversity of ammonia-oxidizing bacteria in the soil determined on the basis of the appearance of amoA gene diversity in denaturing gradient gel electrophoresis.  相似文献   

9.
Determining the fate of xenobiotic materials in the environment can be aided by the use of radioactive isotope technology. Previous research on the degradation of polymers such as polyethylene (PE) was aided by the utilization of radiotracers. In order to study the environmental fate of degradable (PE/starch) plastics, we synthesized3H-labeled PE. Results of soil incubation studies indicate that only minimal degradation of the PE component, as indicated by the production of water-soluble metabolites, occurred during 2 years of incubation in soil. Despite the minimal degradation, the3H label did not allow for detection of the degradation products. In addition, the3H-PE was particularly useful for tracing the fate of degradable plastics after consumption by terrestrial isopods. The detection of aqueous-soluble radioactivity in isopod frass was used to indicate degradation of the plastic film.  相似文献   

10.
Biodegradation of Agricultural Plastic Films: A Critical Review   总被引:5,自引:0,他引:5  
The growing use of plastics in agriculture has enabled farmers to increase their crop production. One major drawback of most polymers used in agriculture is the problem with their disposal, following their useful life-time. Non-degradable polymers, being resistive to degradation (depending on the polymer, additives, conditions etc) tend to accumulate as plastic waste, creating a serious problem of plastic waste management. In cases such plastic waste ends-up in landfills or it is buried in soil, questions are raised about their possible effects on the environment, whether they biodegrade at all, and if they do, what is the rate of (bio?)degradation and what effect the products of (bio?)degradation have on the environment, including the effects of the additives used. Possible degradation of agricultural plastic waste should not result in contamination of the soil and pollution of the environment (including aesthetic pollution or problems with the agricultural products safety). Ideally, a degradable polymer should be fully biodegradable leaving no harmful substances in the environment. Most experts and acceptable standards define a fully biodegradable polymer as a polymer that is completely converted by microorganisms to carbon dioxide, water, mineral and biomass, with no negative environmental impact or ecotoxicity. However, part of the ongoing debate concerns the question of what is an acceptable period of time for the biodegradation to occur and how this is measured. Many polymers that are claimed to be ‘biodegradable’ are in fact ‘bioerodable’, ‘hydrobiodegradable’, ‘photodegradable’, controlled degradable or just partially biodegradable. This review paper attempts to delineate the definition of degradability of polymers used in agriculture. Emphasis is placed on the controversial issues regarding biodegradability of some of these polymers.  相似文献   

11.
Biodegradation of poly(lactic) acid (PLA) has been studied extensively, but there is only limited knowledge about the effect of irradiation sterilization on its biodegradability. The aim of this work was to examine the aerobic biodegradation of gamma and electron beam irradiated PLA films along with the effects of aging (3, 6, and 9 months of storage) using a direct measurement respirometric system. Commercial PLA film was exposed to a simulated aerobic compost environment, and its mineralization was 96 % at day 85. Gamma and electron beam irradiation affected the biodegradation of the post-irradiated PLA film. Aging irradiated PLA had some potential to increase the biodegradation rate, as the average value of mineralization after 9 months of storage was higher than for the non-irradiated PLA. Comparison of the effect of storage time on the biodegradability of PLA showed a significant increase in biodegradation of the gamma irradiated PLA after 3 months (70 %) and 9 months of storage (130 %). Similarly, there was a significant difference in the biodegradation of electron beam irradiated PLA between 3 months (68 %) and 9 months of storage (120 %). Due to the priming effect, the percent mineralization of gamma irradiated and E-beam irradiated PLA after 9 months of storage was greater than 100 %. Both non-irradiated and irradiated PLA films can be considered biodegradable plastics since they showed mineralization percentage larger than 90 % of that of the positive control at the end of the test period.  相似文献   

12.
Two series of starch-filled polyethylene films, consisting of high-density or low-density polyethylene and 0–20% starch, have been exposed for 60 days to a controlled composting environment. Evidence is reported that the oxidation of the polyethylene matrix is dependent upon the polyethylene type and content of starch.  相似文献   

13.
A respirometric system was used to analyze the biodegradation of high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films in soil under laboratory conditions. The respirometric system consisted of air-conditioning pretraps, a soil reactor, and a carbon dioxide (CO2) posttrap. A 200-g homogeneous soil mixture of all-purpose potting soil : manure soil : sand [1 : 1 : 1 (w/w)] and 1.5 g of PLA plastic films in 1 × 1-cm2 squares was added to each bottle. The respirometers were placed in a 28, 40, or 55°C water bath for 182 days. Treatments (three replicates) included native corn starch (positive control), polyethylene (Glad Cling Wrap; negative control), and three PLA films: Ca-I (Cargill Dow Polymers LLC, monolayer), GII (Cargill Dow Polymers LLC, Generation II), and Ch-I (Chronopol; monolayer). The degree of polymer mineralization was indicated by the cumulative CO2 liberated from each respirometer. The initial average mineralization rate and total percentage mineralized of the PLA plastic films at 28, 40, and 55°C was 24.3, 41.5, and 76.9 mg/day with a 27, 45, and 70% carbon loss, respectively. No decrease in soil pH was observed after 182 days of mineralization. Hence, increase in soil temperature drastically enhanced the biodegradation of PLA plastic films in soil under laboratory conditions (P < 0.0001).  相似文献   

14.
The presented work deals with blends composed of polyvinyl alcohol (PVA) and biopolymers (protein hydrolysate, starch, lignin). PVA does not belong to biologically inert plastics but its degradation rate (particularly under anaerobic conditions) is low. A potential solution to the issue problem lies in preparation of blends with readily degradable substrates. We studied degradation of blow-molded films made of commercial PVA and mentioned biopolymers in an aqueous anaerobic environment employing inoculation with digested activated sludge from the municipal wastewater treatment plant. Films prepared in the first experimental series were to be used for comparing biodegradation of blends modified with native or plasticized starch; in this case effect of plasticization was not proved. The degree of PVA degradation after modification with native or plasticized starch increases in a striking and practically same manner already at a starch level as low as approximately 5 wt.%. Films of the second experimental series were prepared as additionally modified with protein hydrolysate and lignin. Only lignin-modified samples exhibited a somewhat lower degree of biodegradation but regarding the measure of lignin present in blend this circumstance is not essential. Level of biodegradation with all discussed films differed only slightly—within range of experimental error.  相似文献   

15.
A comparative study evaluated the acid, alkali, and heat-treated polyethylene biodegradation efficiency of Pseudomonas aeruginosa AMB-CD-1. The polyethylene (PE) pieces were separately treated with heat (50°C), acid (1N HCl), and alkali (1N NaOH) and then washed with water before use. All the treated samples were analyzed through thermogravimetric analysis. In addition, weight and temperature changes during the decomposition reactions were also measured and determined. In these treatments, the PE films of heat-treated and acid-treated low-density polyethylene (LDPE) indicated more significant weight loss at 120°C (48.99% and 40.75%, respectively) as compared to their control or untreated PE and alkali-treated LDPE (21.84% and 24.68%, respectively). A biodegradation assay was then conducted with treated and untreated LDPE films with P. aeruginosa AMB-CD-1 strain. Fourier transform infrared spectroscopy analysis revealed that the heat or acid-pretreated samples with isolate AMB-CD-1 displayed peaks at 2922.84, 2923.97, and 1450.31, 874.22 cm−1 for C–H stretching deformation vibration, CH2 scissoring vibration, –CHO stretching, and strong alkyl structure, respectively. Furthermore, the new peaks with a significant difference at 2500–2000 cm−1 (O═C═O, O–H stretching vibration: carboxylic acid) and 1500–1000 cm−1 (–CHO and C═O stretching) were noticed in the infrared spectral range of LDPE degradation. Modifications in the functional group provided evidence that biodegradation had impacted the chemical structure of the LDPE film. Additionally, it was demonstrated that pretreating LDPE films with heat or acid could speed up their biodegradation.  相似文献   

16.
This study presents the effect of biodegradation, in a composting medium, on properties of membrane-like crosslinked and noncrosslinked polyvinyl alcohol (PVA) and nanocomposites. The composting was carried out for 120 days and the biodegradation of these materials was characterized using various techniques. The changes in the PVA resin and nanocomposite surface topography and microstructure during composting were also characterized. The results from the analyses suggest biodegradation of PVA based materials in compost medium was mainly by enzymes secreted by fungi. The results also indicate that the enzymes degraded the amorphous regions of the specimens first and that the PVA crystallinity played an important role in its biodegradation. The surface roughness of the specimens was seen to increase with composting time as the microbial colonies grew which in turn facilitated further microorganism growth. All specimens broke into small pieces between 90 and 120 days of composting as a result of deep biodegradation. Glyoxal and malonic acid crosslinking decreased the PVA biodegradation rate slightly. Addition of highly crystalline microfibrillated cellulose and naturally occurring halloysite nanotubes in PVA based nanocomposites also decreased the biodegradation rate. The three factors: PVA crystallinity, crosslinking and additives, may be utilized effectively to extend the life of these materials in real life applications.  相似文献   

17.
Carbon black is one of the most widely used and most effective ultraviolet (UV) light stabilizers for plastics applications. Several important segments of the plastics industry rely on carbon black for UV stabilization of weather-resistant products, including telecommunications, power cable jacketing, and plastic pipes. In this research work a combination of Trisnonylphospate (TNPP) antioxidant and different size carbon black were applied in crosslinked polyethylene (XLPE) to improve its wetherability. The primary reason for cross-linking polyethylene (PE) is to raise the thermal stability of the material under load. This substantially improves environmental stress crack resistance and resistance to slow crack growth. The results achieved of this additive package combination show a synergism effect and improved weatherability of electrical cable. Increased weathering lifetime was also achieved. Further, we were able to confirm in this work, that the size and quality of the carbon black dispersion in a XLPE samples is an important component of both the UV-resistance and mechanical properties of the finished plastic article. Incremental improvements of carbon black dispersion can positively influence the expected life of plastic articles. Mechanical testing and FTIR were used to detect degradation of the accelerated weathered XLPE samples. The morphological considerations of UV energy absorption and presents laboratory data demonstrating the link between dispersion and weatherability as well as between morphology and weatherability  相似文献   

18.
Hydrogasification of a coal/polyethylene mixture was carried out using a low concentration of polyethylene in the samples with the aim of industrial application. Coal/polyethylene mixtures in the ratio of 90:10 and 75:25 were used in this study. A hydrogasification experiment was conducted using a unique batch reactor at 1073 K under a 7.1 MPa hydrogen atmosphere. The reaction time varied from 1 to 80 s. The results revealed a methane yield from the mixtures that was noticeably greater than the values calculated from experimental results obtained from coal and polyethylene respectively, assuming no mutual influences. A significant synergistic effect was observed even when the polyethylene content was as low as 10 %. It is suggested that there might be an advantage in hydrogasification processes if waste plastics are mixed with coal, such content being practically assumed.  相似文献   

19.
This paper investigates the operational issues surrounding the open windrow composting of degradable polyethylene sacks. Areas for consideration were the impact of degradable polyethylene sacks on the composting process, the quality of the finished compost product, and how the use of sacks influenced the on-site processing. These factors were investigated through determining the amount of polymer residue and chemical contaminants in the finished compost product and the daily monitoring of windrow temperature profiles. Site and practical handling considerations of accepting an organic waste contained within PE sacks are also discussed. Statistical analysis of the windrow temperature profiles has led to the development of a model that can help to predict the expected trends in the temperature profiles of open compost windrows where the organic waste is kerbside collected using a degradable PE sack.  相似文献   

20.
Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号