首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
General Circulation Models (GCMs) have been developed to assess the impacts of potential global climate change. However, these models do not provide specific weather information at the whole-plant level and thus provide only very gross estimates of conditions that affect plant and disease development. Also, climatic change may increase the frequency of extreme events that influence plant production more than changes in daily or monthly averages. One solution is a simulation approach that can scale weather information from the global down to the plant scale. Over the last 4 years, we have been developing methods to hierarchically define current and forecast weather conditions down to the whole-plant level based on nested high-resolution atmospheric (mesoscale) numerical models. Two hierarchical mesoscale model approaches were tested to downscale weather data in a vineyard. The first, known as the Localized Mesoscale Forecast System (LMFS) uses surface databases to 'localize' mesoscale output. The second, known as the Canopy-Mesoscale Forecast System (CMFS), uses a boundary layer model to downscale mesoscale output. To illustrate the utility of this approach we focused on surface wetness duration (SWD), a variable with high spatial and temporal variability. SWD is also a critical variable for prediction of plant disease. Simulations of SWD with on-site input data were compared to those derived from the mesoscale models and to on-site sensors. Forecasts of atmospheric variables by the two systems were compared to on-site observations. Success in this effort leads us to extend this method to GCMs where factors such as temperature, rainfall, relative humidity, and surface wetness can be estimated within plant and crop canopies. We explore the implications of this work on evaluating the assessment of climate change on the risk of plant disease development.  相似文献   

2.
According to most global climate models, a continued build-up of CO2 and other greenhouse gases will lead to significant changes in temperature and precipitation patterns over large parts of the Earth. Below-ground processes will strongly influence the response of the biosphere to climate change and are likely to contribute to positive or negative biospheric feedbacks to climate change. Current global carbon budgets suggest that as much as 2000 Pg of carbon exists in soil systems. There is considerable disagreement, however, over pool sizes and flux (e.g. CO2, CH4) for various ecosystems. An equilibrium analysis of changes in global below-ground carbon storage due to a doubled-CO2 climate suggests a range from a possible sink of 41 Pg to a possible source of 101 Pg. Components of the terrestrial biosphere could be managed to sequester or conserve carbon and mitigate accumulation of greenhouse gases in the atmosphere.  相似文献   

3.
Mediterranean mountain biomes are considered endangered due to climate change that affects directly or indirectly different key features (biodiversity, snow cover, glaciers, run-off processes, and water availability). Here, we provide an assessment of temperature, precipitation, and spring precipitation changes in Mediterranean mountains under different emission scenarios (Special Report on Emission Scenarios) and Atmosphere-Ocean-Coupled General Circulation Models for two periods: 2055 (2040-2069 period) and 2085 (2070-2099). Finally, the future climate trends projected for Mediterranean mountains are compared with those trends projected for non-Mediterranean European mountain ranges. The range of projected warming varies between +1.4 degrees C and 5.1 degrees C for 2055 (+1.6 degrees C and +8.3 degrees C for 2085). Climate models also project a reduction of precipitation, mainly during spring (-17% under Alfi and -4.8% under B1 for 2085). On the contrary, non-Mediterranean European mountains will not experience a reduction of annual and spring precipitation. Implications of predicted climate change for both human and physical features are coupled in an integrated framework to gain a broad perspective on future trends and their consequences.  相似文献   

4.
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

5.
Hydrological change--climate change impact simulations for Sweden   总被引:6,自引:0,他引:6  
Climate change resulting from the enhanced greenhouse effect is expected to give rise to changes in hydrological systems. This hydrological change, as with the change in climate variables, will vary regionally around the globe. Impact studies at local and regional scales are needed to assess how different regions will be affected. This study focuses on assessment of hydrological impacts of climate change over a wide range of Swedish basins. Different methods of transferring the signal of climate change from climate models to hydrological models were used. Several hydrological model simulations using regional climate model scenarios from Swedish Regional Climate Modelling Programme (SWECLIM) are presented. A principal conclusion is that subregional impacts to river flow vary considerably according to whether a basin is in northern or southern Sweden. Furthermore, projected hydrological change is just as dependent on the choice of the global climate model used for regional climate model boundary conditions as the choice of anthropogenic emissions scenario.  相似文献   

6.
Chen X  Li BL 《Chemosphere》2003,51(3):215-226
Studies on the combined effects of global climate change and human disturbances are important for biodiversity conservation and natural resources management. Here we use the modified forest dynamics model to simulate the tree diversity change of a typical mixed broadleaved Korean pine forest regenerating from clear-cuts in Northeast China in response to global climate change, double concentration of CO(2) and human disturbances during the next 50 years. We consider the following climate change scenario: the annual temperature will increase 2 degrees C, the annual precipitation will increase 10% and CO(2) concentration will increase to 700 microll(-1) linearly in 50 years. Five kinds of human disturbances under climate change are considered: logging which removes all trees with diameter at the breast height of more than 50 cm; removing all individuals of any one species; and removing all individuals of shade tolerant, shade intolerant and medium type tree species, respectively. We find that the index of proportional representation of species (alpha index) for the forest growing from clear-cuts increases significantly under climate change, but decreases under climate change plus logging. The index of changing representation of species (beta(c) index) increases significantly under climate change and climate change plus logging. When any one species is removed alpha diversity of the forest growing from clear-cuts changes significantly under climate change, but beta(c) index remains almost the same. When all individuals of shade tolerant species, shade intolerant species, or medium type species are removed, respectively, alpha diversity decreases, but beta(c) diversity changes in more complicated ways. The implications of these results for preserving tree diversity in this type of forest are also discussed.  相似文献   

7.
Global change encompasses changes in atmospheric composition, climate and climate variability, and land cover and land use. The occurrence of these changes and their interactive effects on biological systems are worldwide; thus, an effective global change research and impact assessment program must be based on international and interdisciplinary research and communication. With this in mind, several collaborative research networks with a focus on global change have been established in the biological sciences. They include the Global Change and Terrestrial Ecosystems (GCTE) Core Project of the International Geosphere-Biosphere Programme (IGBP) which aims to predict the effects of global change on terrestrial ecosystems, including agriculture and production forestry. Because of the importance of plant pests (arthropods, microbial pathogens, weeds) as yield-reducing factors in agriculture and as early indicators of global change, GCTE initiated a network Activity on "Global Change Impacts on Pests, Diseases and Weeds" with the overall goal of developing a predictive capability for impact assessment and adaptation. The network's specific objectives, contributing research projects, initial results and future challenges are discussed.  相似文献   

8.
Simulations using global coupled climate models predict a climate change due to the increasing concentration of greenhouse gases and aerosols in the atmosphere. Both are associated with the burning of fossil fuels. There has been considerable debate if this postulated human influence is already evident. This paper gives an overview on some recent material on this question. One particular study using optimal fingerprints (Hegerl et al., 1996) is explained in more detail. In this study, an optimal fingerprint analysis is applied to temperature trend patterns over several decades. The results show the probability being less than 5% that the most recently observed 30 year trend is due to naturally occurring climate fluctuations. This result suggests that the present warming is caused by some external influence on climate, e.g. by the increasing concentrations of greenhouse gases and aerosols. More work is needed to address the uncertainties in the magnitude of naturally occurring climate fluctuations. Also, other external influences on climate need to be investigated to uniquely attribute the present climate change to the human influence.  相似文献   

9.

This study projected the future temperature change for Egypt during the late of this century (2071–2100) for three representative concentration pathways (RCP2.6, RCP4.5, and RCP8.5), by correcting regional climate model (RCM) simulations of average, maximum, and minimum daily temperature with reference to observed data of 26 stations. Four commonly used methods of bias correction have been applied and evaluated: linear scaling, variance scaling, and theoretical and empirical quantile mapping. The compromise programing results of the applied evaluation criteria show that the best method is the variance scaling, and thus it was applied to transfer the correction factor to the projections. All temperature indices are expected to increase significantly under all scenarios and reach the highest record by the end of the century, i.e., the expected increase in average, maximum, and minimum temperature ranges between 4.08–7.41 °C, 4.55–7.89 °C, and 3.88–7.23 °C, respectively. The largest temperature rise will occur in the summer, with the highest increase in the maximum (minimum) temperature of 10.9 °C (10 °C) in July and August under RCP8.5. The maximum (minimum) winter temperature, on the other hand, will drop by a maximum of 2 °C (1.35 °C) under RCP2.6. The Western Desert and Upper Egypt are the regions most affected by climate change, while the northern region of Egypt is the least affected. These findings would help in impact assessment and adaptation strategies and encourage further investigation to evaluate various climate models in order to obtain a comprehensive assessment of the climate change impacts on different hydrometeorological processes in Egypt.

  相似文献   

10.
The likely impact of climate change on the moisture regime of Scottish soils and consequently on agriculture and land use has been addressed using a novel Geographic Information Systems (GIS) approach. Current estimates of changes in summer precipitation by the year 2030 are 0% with an associated uncertainty of +/- 11%. This study considers the worst case scenario of a decrease in rainfall by 11% which will lead to some low rainfall areas experiencing an increased drought risk, particularly on lighter soils. Wet areas with heavy soils could benefit from an increase in the accessibility period for machinery. As the major agricultural land in Scotland is located on the relatively dry east coast where localised problems due to drought are not uncommon even under the present climate, the detrimental effects of a decrease in rainfall for the whole of Scotland are therefore likely to outweigh the benefits. Approximately 8% of Scotland has been identified in this study as soil/climate combinations which will be susceptible to drought should summer rainfall decrease by 11% and summer temperature increase by 1.4 degrees C.  相似文献   

11.
We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.  相似文献   

12.

The international community is paying more attention to climate change because a consensus has been reached that climate change has an adverse effect not only on the environment but also on agriculture. Therefore, in this study, present and future climate datasets (obtained from general circulation models) including atmospheric carbon concentration were used to assess the impact of climate change on grain production for an important base of China (Northeast). An empirical model has been developed using climate and other additional variables (effective irrigation area, fertilizer, and labor force) to assess the effect of climate change on grain production. The results revealed that maximum temperature is a key climate determinant in grain production of the study area. Atmospheric carbon concentration showed a significant impact on grain outputs in most of the cases. During the analysis, it was observed that precipitation displayed a declining trend while an effective irrigation area showed positive non-significant contribution to grain production. Analysis based on different representative concentration pathways exhibited that maximum temperature may contribute negatively to grain production in the future. Overall, the analysis showed that climate change has a significant contribution to grain production. In conclusion, the implications for future research and policymakers have been addressed. Particularly, the importance of considering regional differences in adaptation planning in agricultural regions was also considered.

  相似文献   

13.
Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.  相似文献   

14.
This paper describes a pilot scale treatment plant that has been designed and built for the thermal inactivation in pig slurry of two viruses that infect pigs--African swine fever virus (ASFV) and swine vesicular disease virus (SVDV). The plant treats pig slurry continuously at a rate of up to 100 litres/hour and functions by heating the slurry, maintaining at least 99.99% of the slurry at the required temperature for a minimum period of 5 minutes, and then recovering the heat to raise the temperature of the incoming slurry. Results obtained indicated that SVDV was inactivated in pig slurry to below detectable levels with an alkaline pH (pH 7.5 to 8, as is usually the case) at a temperature of between 50 and 55 degrees C. In acidified slurry (pH 6.4), inactivation occurred between 55 and 60 degrees C. The difference in inactivation temperatures was probably due to the presence of free ammonia in the unacidified slurry. ASFV was inactivated by operating the plant at a temperature of 53 degrees C at a pH of 8.  相似文献   

15.
16.
Climatic change and associated global changes are of major interest to foresters, both in terms of forest ecology and of future forest production. Predicting the likely effects of global change on forests is extremely difficult due to the critical lack of information on regional changes in meteorological factors relevant to forests. However, existing models of forest production and forest distribution fail to take adequate account of what is already known. Climate and carbon dioxide concentrations have shown substantial changes over the last 100 years. Although the rate of change is likely to increase, recent proposed and implemented control strategies, together with better climatic models, are tending to suggest that the rate of change will be less than initially thought. This means that past changes may provide an increasingly useful source of information. In particular, information on the impact on forests of both long-term climate change and short-term climatic events is rapidly increasing. Such information should be built into future forest response models.  相似文献   

17.
Possible effects of climate change on air quality are studied for two urban sites in the UK, London and Glasgow. Hourly meteorological data were obtained from climate simulations for two periods representing the current climate and a plausible late 21st century climate. Of the meteorological quantities relevant to air quality, significant changes were found in temperature, specific humidity, wind speed, wind direction, cloud cover, solar radiation, surface sensible heat flux and precipitation. Using these data, dispersion estimates were made for a variety of single sources and some significant changes in environmental impact were found in the future climate. In addition, estimates for future background concentrations of NOx, NO2, ozone and PM10 upwind of London and Glasgow were made using the meteorological data in a statistical model. These showed falls in NOx and increases in ozone for London, while a fall in NO2 was the largest percentage change for Glasgow. Other changes were small. With these background estimates, annual-average concentrations of NOx, NO2, ozone and PM10 were estimated within the two urban areas. For London, results averaged over a number of sites showed a fall in NOx and a rise in ozone, but only small changes in NO2 and PM10. For Glasgow, the changes in all four chemical species were small. Large-scale background ozone values from a global chemical transport model are also presented. These show a decrease in background ozone due to climate change. To assess the net impact of both large scale and local processes will require models which treat all relevant scales.  相似文献   

18.
We review the available data that can be used to assess the potential impact of climate change on vegetation, and we use central Spitsbergen, Svalbard, as a model location for the High Arctic. We used two sources of information: recent and short-term historical records, which enable assessment on scales of particular plant communities and the landscape over a period of decades, and palynological and macrofossil analyses, which enable assessment on time scales of hundreds and thousands of years and on the spatial scale of the landscape. Both of these substitutes for standardized monitoring revealed stability of vegetation, which is probably attributable to the harsh conditions and the distance of the area from sources of diaspores of potential new incomers. The only evident recent vegetation changes related to climate change are associated with succession after glacial retreats. By establishing a network of permanent plots, researchers will be able to monitor immigration of new species from diversity 'hot spots' and from an abandoned settlement nearby. This will greatly enhance our ability to understand the effects of climate change on vegetation in the High Arctic.  相似文献   

19.
Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.  相似文献   

20.
Environmental Science and Pollution Research - In the context of global climate change, studies have focused on the ambient temperature and mortality of cardiovascular diseases (CVDs). However,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号