首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In an earlier report, we presented a method for preparing activated carbon from waste newspaper as a way to recycle used paper for a purpose other than producing raw material for paper-making. In this article, we consider the porous structure of the activated carbon that affects its adsorption properties for various substances. The specific surface area of activated carbon prepared from waste newspaper was 838 m2/g, the micropore volume was 0.368 ml/g, and the mesopore volume was 0.138 ml/g, which is about the same as commercially available activated carbon. The activated carbon prepared from waste newspaper usually has a high content of ash, which makes little contribution to the adsorption properties. In particular, as compared with reagent-activated carbon, the quantities of mesopores with a pore radius of 3–25 nm and macropores with a pore radius of 25–250 nm were 8 and 14 times larger, respectively. Activated carbon prepared from waste newspaper has a well-developed porous structure, particularly in the mesopore and macropore ranges. Received: July 12, 1999 / Accepted: March 8, 2000  相似文献   

2.
Activated carbons were produced from waste pine wood sawdust using fast activation with H3PO4 in a spouted bed. In this study, activation temperature was set as 800 °C, and activation time ranged from 1 to 15 min. Experimental results show that sawdust impregnated with higher mass ratio of H3PO4 would be agglomerated in spouted bed, and difficult to fluidize. Therefore, an amount of quartz sand was added to assist for good fluidization. Fluidization of particle can improve the BET surface area or micropore volume of activated carbons. High BET surface area activated carbons can be obtained with activation time of only 1–5 min by combining the fluidization and H3PO4 fast activation. The obtained activated carbons contained developed pore structure and abundant surface functional groups (carboxyl, carbonyl and P-containing groups) by SEM–EDS, FTIR and XPS techniques. The particles of impregnation ratio of 1:1 can achieve fluidization without adding the quartz sand, which was convenient for experimental operation and even industrial production, and the BET surface area can reach more than 1000 m2/g in activation time of only 5 min.  相似文献   

3.
We have already reported the adsorptivity and pore structure of activated carbon made from waste newspaper in order to use the waste paper for purposes other than paper-making stock. However, manufacturing the activated carbon may not necessarily be an advantageous method based on environmental concerns and the effective use of the resource because the reaction during the activating process is endothermic and the amount of carbon consumed is significant. Here, we examine the pore structure and adsorption properties of waste newspaper used as an adsorbent in the form of a carbonized material. Waste newspaper was carbonized for 2 h in the temperature range 400°–1000°C. The specific surface area of the carbonized material obtained, 418 m2/g, was highest for the sample carbonized at 800°C, which was equal to or greater than that of commercially available charcoal. Moreover, the iodine adsorption number of 581 mg/g was the highest and the rate of adsorption was the fastest for the sample carbonized at 800°C. However, the humidity control capability was highest for the material carbonized at 600°–700°C. It has been determined that it is advantageous to carbonize waste paper at 800°C in order to use the carbonized material as an adsorbent, while carbonization at 600°–700°C is more advantageous for use as a humidity control material. Received: June 23, 2000 / Accepted: January 17, 2001  相似文献   

4.
Waste biomass in the form of coconut shells was pyrolyzed and activated with steam to produce activated carbons, which were then assessed for their potential for use in the processing of gold. Activated carbons with different amounts of carbon burn-off were prepared by steam activation of carbonized coconut shells. Carbonization of the shells was performed at a pyrolysis temperature of 600?°C and the resulting chars were activated in steam at a gasification temperature of 900?°C and various durations of activation time. Textural characteristics of the derived activated carbons were determined and their effects on gold adsorption from an acidified gold chloride solution were studied. The surface area and porosity of the activated carbons increased with activation time up to 59 wt?% carbon burn-off. A further increase in the burn-off resulted in the loss of structural walls between pores and consequently, a decline in the surface area and porosity of the activated carbons. The gold adsorption capacity and rate of gold adsorption from the gold chloride solution onto the activated carbons were found to increase significantly with the total pore and micropore volumes of the activated carbons.  相似文献   

5.
In this study, we propose a process making calcium carbonate and calcium sulfate and recovering absorbent using ammonia absorbent, carbon dioxide, and industrial waste. The main objective of this study is to confirm the possibility of carbon capture and utilization based on waste materials. We assumed desulfurization gypsum and construction waste (ready mixed concrete washing water, waste concrete, etc.) are CaSO4, Ca(OH)2, respectively. And concentration of simulated carbon dioxide gas was 15 vol% similar to flue gas. Calcium carbonate was produced by combination reaction between ionic CO2 in absorbent and metal ion in the solid waste. Experiments were conducted at normal temperature and pressure. Furthermore, the generated products were characterized by X-ray diffraction, and scanning electron microscope.  相似文献   

6.
This research article describes, an eco-friendly activated carbon prepared from the Gracilaria corticata seaweeds which was employed for the preparation of biodegradable polymeric beads for the efficient removal of crystal violet dye in an aqueous solution. The presence of chemical functional groups in the adsorbent material was detected using FTIR spectroscopy. The morphology and physical phases of the adsorbent materials were analyzed using SEM and XRD studies respectively. Batch mode dye adsorption behavior of the activated carbon/Zn/alginate polymeric beads was investigated as a function of dosage, solution pH, contact time, initial dye concentration and temperature. Maximum dye removal was observed at a pH of 5.0, 1 g of adsorbent dosage with 60 mg/L dye concentration, 50 min of contact time and at 30 °C. The equilibrium modeling studies were analyzed with Freundlich and Langmuir adsorption isotherms and the adsorption dynamics was predicted with Lagergren’s pseudo-first order, pseudo-second order equations and intra particle diffusion models. The process of dye removal followed a pseudo second-order kinetics rather than pseudo first order. The thermodynamic parameters like standard Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) were determined and the results imply that the adsorption process was spontaneous, endothermic and increases the randomness between the adsorbent and adsorbate. The results from the experimental and correlation data reveal that the Gracilaria corticata activated carbon/Zn/alginate polymeric beads have proved to be an excellent adsorbent material for the removal of CV dye.  相似文献   

7.
Mercury from coal-fired utility boilers, as the largest atmospheric mercury emission source, imposes serious environmental risks and health concerns. In order to explore the possibility of reducing costs of activated carbon injection, we investigated the most promising mercury control technology, Hg0 removal using ZnCl2-impregnated adsorbents derived from sewage sludge. The results demonstrated that sludge-based adsorbents (SBAs) had fairly high mercury adsorption capacity over a wide range of temperatures (80–170 °C). Oxidizing atmosphere could improve the adsorption of Hg0 and weaken the inhibition of SO2 on mercury adsorption to some extent. NO exhibited no obvious impact on mercury removal performance. In addition, to clarify whether oxygen- or chlorine-containing functional groups attributed to good mercury adsorption capacity of SBAs, the oxygen-containing functional groups were removed using Boehm’s method, and a temperature-programmed decomposition desorption experiment was conducted. The results suggest that chlorine-containing functional groups played a significant role in the removal process of mercury from flue gas using SBAs.  相似文献   

8.
Life cycle assessment (LCA) was carried out by SimaPro 7.3 to study the environmental impact of a lab-scale batch subcritical water decomposition operation for a kilogram of Perfluorooctane sulfonic acid (PFOS) waste treatment in this study, a proven process for the decomposition of PFOS pollutants with high concentration. This LCA focuses on not only the main environmental factors from emissions of toxic pollutants, but also the influence from technical characteristics of the iron-induced subcritical water technology including energy and substances consumption during the subcritical water decomposition treatment process. The IMPACT 2002+ environmental model was used to evaluate the 15 midpoint and 4 end-point environmental damages. It was found that the energy consumption to sustain the high temperature (350 °C) and high pressure (23 MPa) in the subcritical water process contributes 99.8 % of the damages. The total negative impact of the SCWD process for 1 kg of PFOS waste treatment to human health, ecological quality, climate change and resources amounts to 1.11 × 10?3, 8.43 × 10?5, 9.76 × 10?4, 9.05 × 10?4 Pt, respectively. And the improvement of energy efficiency and catalytic effectiveness are two important factors to reduce the environmental impact from the SCWD process for the treatment of PFOS waste.  相似文献   

9.
Polychlorinated biphenyl (PCB) residues from the sodium dispersion (SD) process were employed as the raw materials for the production of activated carbon using KOH activation. The pore properties, such as the specific surface area and pore size distribution, were characterized using the Barrett–Joyner–Halenda method and the Horvath–Kawazoe method based on the N2 adsorption isotherm at 77 K. The activated carbon produced showed similar adsorption capacities and specific surface areas to the commercially available product. The effects of the activation conditions on the porosity of the activated carbon produced were studied. The most significant factor affecting the specific surface proved to be the activation temperature. The activated carbon produced from PCB residues from the high-temperature (423–443 K) SD process had a binary pore size distribution well developed in the 4 nm region and in the micropore region. The pore structure of the carbon produced from PCB residues from the low-temperature (333–393 K) SD process had a wide range of micropores and mesopores.  相似文献   

10.
The present study describes the treatment of sugar industry waste water and its use as a potential low cost substrate for production of bioplastic by Bacillus subtilis NG05. The B. subtilis NG05 grow at the rate of 0.14 g h?1 L?1 of production media used and accumulate the 50.1 % of poly β-hydroxybutyrate (PHB). The phase contrast microscopy revealed the presence of PHB granules in B. subtilis NG05 which was further confirmed by Fourier transform infrared spectroscopy and 1H-nuclear magnetic resonance. The polymer was further analysed by differential scanning calorimetry. PHB production yield was achieved up to 4.991 g L?1 with Sugar industry waste water as sole nutrient source. Thus the process provided dual benefits of conversion of a waste material into value added product, PHB and waste management.  相似文献   

11.
Increasing concern about the air pollution caused by sulfur dioxide (SO2) from diesel exhaust has resulted in the improvement of low-temperature desulfurization materials for the combined SO2 trap. In this study, coconut shell activated carbon (AC) is pretreated by nitric acid to prepare MnO2-based activated carbon materials for SO2 removal. The prepared materials are characterized intensively by SEM, TEM, BET, XRD, FTIR, and XPS. The SO2 capture capacity of these materials are measured at low temperature by thermogravimetry, and the SO2 equilibrium adsorption characteristic is also investigated. The results show that the concentrations of nitric acid do not significantly change the textural properties of MnO2-based AC materials. The content of surface-oxygenated groups (carbonyl carbon and transition) initially increases with the HNO3 concentration rising and reaches the maximum value when the HNO3 concentration is 10 mol/L, resulting in the enhancement of the SO2 capture capacity. SO2 capture capacity of MnO2-based activated carbon decreases after regeneration and keeps stable after several cycles of thermal regeneration. The experimental data for SO2 adsorption on MnO2-based AC composite can fit the Freundlich model well in comparison with Langmuir model.  相似文献   

12.
Due to booming economy, growing population and rapid urbanization, solid waste generation in the cities of developing countries has significantly increased. Yangon is the largest and most densely populated city, with over five million residents in Myanmar. Open dumping is the major waste disposal method and recycling sector remains at an early development stage. With increasing waste generation, current waste management activities in Yangon have significant environmental impacts. Therefore, the study developed two linear models to predict annual solid waste generation, regarding per capita waste generation, population growth scenarios, literacy rates and gross domestic products. The Intergovernmental Panel on Climate Change and Institute for Global Environmental Strategies calculation methods were used for greenhouse gas (GHG) emission prediction from recycling, waste transportation and final disposal sites (FDSs). As a result, the total annual waste generation and GHG emission in 2015 may double over the next decade. Two major FDSs, Htawe Chaung and Hteinpin, may contribute waste disposal of 272–797 kilotons per year and emit 177–518 Gg of CO2-eq per year by 2025. The assessment of annual solid waste generation and GHG emission potential may offer advantages in assisting development of waste management plans in Yangon.  相似文献   

13.
用微孔填充理论研究活性炭对有机气体的吸附性能   总被引:1,自引:1,他引:1  
用微孔填充理论研究了活性炭C40/4对丙酮、甲苯、二氯甲烷有机气体的吸附性能,测试了该活性炭对3种有机气体在不同温度下(288.15,293.15,298.15K)的吸附结果。用D—R方程处理了实验数据,建立了3种有机气体在活性炭C40/4上的等温吸附模型,并将实验测试值与理论预测值进行了比较。实验结果表明:微孔填充理论及D—R方程可很好地描述活性炭C40/4对有机气体的吸附性能,理论预测值与实验测试值的平均相对误差小于3%;有机气体分压较高时,由于发生毛细凝聚,理论预测值较实验测试值偏低。  相似文献   

14.
The objective of this research was to evaluate possibility of utilizing Acacia leaves (A. mangium and A. auriculiformis), which is an agro-industrial waste from the pulp and paper industry. The effects of alkaline pre-treatment and co-digestion with Napier grass for the enhancement of biogas production from Acacia leaf waste (ALW) were investigated. Six continuous stirred tank reactors with a working volume of 5 L were carried out at the laboratory scale. The results showed that pre-treatment of Acacia leaf waste (pretreated ALW) by soaking in 3 % NaOH for 48 h increased the biogas and methane productivity to 0.200 and 0.117 m3/kgVSadded compared to 0.098 and 0.048 m3/kgVSadded of raw ALW digestion, respectively. Meanwhile, the co-digestion of Acacia leaves with different proportions of Napier grass at ratios of 1:1–1:3 in volatile solid basis also increased the production of biogas and its productivity. The maximum gas production yields of 0.424 and 0.268 m3/kgVSadded for biogas and methane were obtained at 1:3 ratio. This finding affirms the potential of ALW and its possibility to use as biogas feedstock in both single and co-substrate with Napier grass.  相似文献   

15.
Poly(acrylamide-co-maleic acid)/montmorillonite nanocomposites, were synthesized via in situ polymerization with different maleic acid and MMT content. The capability of the hydrogel for adsorption of crystal violet (CV) was investigated in aqueous solutions at different pH values and temperatures. The pseudo-second-order kinetics model could fit successfully the adsorption kinetic data. The effects of maleic acid to acrylamide molar ratio (MAR), weight percent of MMT (MMT%), the pH of medium and the solution temperature (T) on the CV adsorption capacity (q e ) of adsorbents were studied by Taguchi experimental design approach. The results indicated that increasing the MMT% leads to a greater q e . The q e value of adsorbents increased also with increasing both MAR and pH, while reduced when the temperature of medium increased. The relatively optimum conditions to achieve a maximum CV adsorption capacity for P(AAm/MA)/MMT adsorbents were found as: 0.06 for MAR and 5 % of MMT%, medium pH = 7 and T = 20 °C.  相似文献   

16.
The main objective of this study was to determine whether methane potential of waste could be estimated more easily by a limited number of waste characterization variables. 36 samples were collected from 12 locations and 3 waste depths in order to represent almost all waste ages at the landfill. Actual remaining methane potential of all samples was determined by the biochemical methane potential (BMP) tests. The cumulative methane production of closed landfill (cLF) samples reached 75–125 mL at the end of experiment duration, while the samples from active landfill (aLF) produced in average 216–266 mL methane. The average experimental k and L 0 values of cLF and aLF were determined by non-linear regression using BMP data with first-order kinetic equation as 0.0269 day?1–30.38 mL/g dry MSW and 0.0125 day?1–102.1 mL/g dry MSW, respectively. The principal component analysis (PCA) was applied to analyze the results for cLF and aLF along with BMP results. Three PCs for the data set were extracted explaining 72.34 % variability. The best MLR model for BMP prediction was determined for seven variables (pH–Cl–TKN–NH4–TOC–LOI–Ca). R 2 and Adj. R 2 values of this best model were determined as 80.4 and 75.3 %, respectively.  相似文献   

17.
The fermentation conditions for poly(l-lactide) (PLA)-degrading enzyme production by Amycolatopsis orientalis ssp. orientalis were statistically optimized by response surface methodology. The optimal value of the most important factors was 0.39 % PLA and 0.34 % gelatin for 2.81 days of cultivation. Under these conditions, the model predicted a PLA-degrading activity of 155.30 U/l. The verification showed the production amount of 154.2 U/l. The crude enzyme from A. orientalis ssp. orientalis showed potent PLA-degrading ability, which is efficient for the biological recycling of PLA. Up to 4,000 mg/l of PLA granule was completely degraded within 5 days at 45 °C by the crude enzyme. l-lactic acid (600 mg/l) was obtained as a degradation product of PLA after only 2 h of incubation. The results indicated that the crude PLA-degrading enzyme from A. orientalis ssp. orientalis has the potential to degrade PLA to lactic acid for the recycling of PLA industry and waste disposal.  相似文献   

18.
Activated carbon, developed from fertilizer waste, has been used for the removal of Hg2+, Cr6+, Pb2+, and Cu2+. Mass transfer kinetic approach has been successfully applied for the determination of various parameters necessary for designing a fixed-bed absorber. Parameters selected are the length of the (PAZ) primary adsorption zone (δ), total time involved for the establishment of primary adsorption zone (tx), mass rate of flow to the absorber (Fm), time for primary adsorption zone to move down its length (tδ), amount of adsorbate adsorbed in PAZ from breakpoint to exhaustion (Ms), fractional capacity (f), time of initial formation of PAZ (tf) and per cent saturation of column at break point. Chemical regeneration has been achieved with 1 M HNO3.  相似文献   

19.
Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250–300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.  相似文献   

20.
This work aims to study the influence of thermal treatment of Cu2+ laden kaolin wastes on its immobilization efficiency in cement paste. Compressive strength and toxicity characteristic leaching procedure (TCLP) of 5–20 % kaolin waste blended cement pastes were tested. X-ray diffraction (XRD) results illustrate that adsorption of Cu2+ ions modify the crystal structure of kaolinite mineral. Fourier transform infrared (FTIR) results indicate that the adsorption sites on the kaolin surface that were occupied with free water molecules have been replaced with Cu2+ ions adsorbed from aqueous solutions. The thermal treatment of kaolin waste improves fixation ratio of Cu2+ in cement pastes containing up to 20 % of thermally treated waste. This is due to: pozzolanic activity of calcined kaolin, conversion of leachable adsorbed Cu2+ ions into encapsulated unleachable phase that does not retard the hydration of cement as well as adsorption of much of leachable Cu2+ ions on surfaces of hydration products and occlusion in its lattice structure as illustrated from XRD, FTIR, thermogravimetric, scanning electron microscopy and TCLP results. The fixation ratio of Cu2+ in cement paste blended with 20 % of thermally treated kaolin waste, reaches maximum value of about 97 % compared to 82 % for cement paste blended with 20 % of untreated kaolin waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号