首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Temporal status and trends in water quality of Al-Wehda Dam, Jordan, from 2006 to 2012 indicate that the dam is subject to a combination of impacts from rainstorm and agricultural runoffs. It also revealed that mineral dissolution, sediment load, rainfall events, evaporation, and water-level fluctuation are the major contributors to variations in water quality. The water chemistry of the impounded Al-Wehda Reservoir showed that Na, Ca, Mg, HCO3, and Cl are the principal ions, reflecting the dominance of carbonate weathering, with some contribution of silicates. The pH values showed a cyclic pattern with highest values observed in the spring seasons. Total dissolved solids (TDS), Ca, Mg, and HCO3 are primarily related to leaching and evaporation, with elevated levels that occurred in the rainy winter months. In contrast, seasonal patterns in Na, K, Cl, and NH4–N contents showed decreased values in winter. Peaks in NO3–N observed in winter are strongly associated with agricultural runoff. Fluctuations in chlorophyll-a level were coincided with low ratio of total nitrogen (TN) to total phosphorus (TP). Seasonal variations in organic matter content were also apparent, with peaks that generally occurred in spring through early fall corresponding with high algal growth. On an annual basis, the vast majority of water quality data have generally declined, particularly, in 2011. However, it is not clear whether these decreases are related to change in management practices within the Yarmouk basin, or protective measures have been implemented. Comparison of in-lake and post-dam water quality from 2009 to 2011 showed variation in concentrations, where Ca, HCO3, NO3–N, Mg, and TDS showed relatively greater post-dam values than in-lake water, whereas pH, Na, Cl, K, COD, BOD5, and chlorophyll-a were consistently lower in post-dam water. This comparison emphasizes the importance of self-purification capacity of Al-Wehda Dam in reducing some contaminants.  相似文献   

2.
This research investigated the spatiotemporal variation of water quality in the Gilgel Gibe reservoir, Ethiopia, using physicochemical water quality parameters. Nonparametric tests and multivariate statistical techniques were used to evaluate data sets measured during dry and rainy seasons. Electrical conductivity (EC), pH, biochemical oxygen demand (BOD5), total phosphorus (TP), total nitrogen (TN), nitrate (NO3?), total dissolved solids (TDSs), and total suspended solids (TSSs) were all significantly different among seasons (Mann-Whitney U test, p?<?0.01). In addition, principal component analysis distinguished dry season samples from wet season samples. The dry season was positively associated with EC, pH, TP, TN, NO3?, TDS, and TSS and negatively associated with BOD5. The wet season was in contrast associated with high values of turbidity, soluble reactive phosphorus (SRP), water temperature, and dissolved oxygen (DO). Within the reservoir, spatial variation was observed for some of the water quality parameters, with significant difference at p?=?<?0.05. Overall, high nutrient concentrations suggest eutrophic conditions, likely due to high nutrient loading from the watershed. Levels of TSS, attributed to inputs from tributaries, have been excessive enough to inhibit light penetration and thus have a considerable impact on the aquatic food web. Our findings indicate that the reservoir is at high risk of eutrophication and siltation, and hence, urgent action should target the planning and implementation of integrated watershed management for this and similar reservoirs in the region.  相似文献   

3.
土地利用景观格局对信江水质的影响   总被引:2,自引:0,他引:2  
利用GIS空间分析与统计方法,从景观尺度和类型尺度两方面分析了流域景观格局空间分异对河流高锰酸盐指数(CODMn)、氨氮、总氮(TN)、化学需氧量(CODCr)的影响。信江流域的景观组成对CODMn、氨氮、TN、CODCr浓度存在显著影响,耕地和建设用地的面积比例与各项指标浓度间存在显著正相关,林地与各指标浓度存在显著负相关。各项指标在流域上游变化不大,而在流域的下游变化显著。从景观尺度上看,流域景观以少数大斑块为主或同一类型的斑块高度连接时,河流中CODMn、氨氮、TN、CODCr浓度较低,水质较好。从流域类型尺度上看,各类型的景观结构对河流中CODMn、氨氮、TN、CODCr浓度影响不同,建设用地以及耕地的集中大面积彼此相临的连片分布会导致河流中CODMn、氨氮、TN、CODCr等浓度的升高,而林地则表现出相反的效应。  相似文献   

4.
流域上游来水是水库的重要补给源,其水质状况直接决定下游受纳水库的生态系统状态和功能,研究入库来水营养盐的时间演变特征并揭示其变化的影响因素,为水库水质管理提供重要科学依据。以新安江水库安徽辖区为研究区,分析了2007—2016年期间流域入库水质的变化特征,探讨水文、气象等环境条件对入库水质的影响。研究结果表明,2007年以来,CODMn和透明度表现为下降趋势,TN、TP、NH3-N呈明显上升趋势,来水营养水平上升,但叶绿素a呈下降趋势。流域降水带来的水文情势的变化对来水水质起重要作用,来水中N、P营养盐丰水期显著高于枯水期,同流域降水过程显著正相关。  相似文献   

5.
以黑龙江省生态环境监测网监测结果为基础,总结归纳了"十三五"期间黑龙江省生态环境质量变化特征,并采用随机森林和GM(1,1)预测模型对"十四五"期间黑龙江省生态环境质量状况进行了预测。结果表明:"十三五"期间,黑龙江省环境空气、水环境和声环境质量全面好转。其中,环境空气主要污染物PM2.5、PM10、SO2、NO2和CO的年均质量浓度均呈现出明显下降的趋势,"哈大绥"重点区域PM10、SO2、NO2和CO年均质量浓度呈现下降趋势。地表水水质总体呈波动变化趋势,水质状况均为轻度污染。"十四五"期间,黑龙江省生态环境质量将处于稳中向好的趋势。环境空气主要污染物及地表水主要污染指标年均质量浓度均呈现明显的下降趋势,道路交通声环境质量也将得到进一步改善。  相似文献   

6.
Interpretations of state and trends in lake water quality are generally based on measurements from one or more stations that are considered representative of the response of the lake ecosystem. The objective of this study is to examine how these interpretations may be influenced by station location in a large lake. We addressed this by analyzing trends in water quality variables collected monthly from eight monitoring stations along a transect from the central lake to the north in Lake Taihu (area about 2,338 km2), China, from October 1991 to December 2011. The parameters examined included chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) concentrations, and Secchi disk depth (SD). The individual variables were increasingly poorly correlated among stations along the transect from the central lake to the north, particularly for Chl a and TP. The timing of peaks in individual variables was also dependent on station location, with spectral analysis revealing a peak at annual frequency for the central lake station but absence of, or much reduced signal, at this frequency for the near-shore northern station. Percentage annual change values for each of the four variables also varied with station and indicated general improvement in water quality at northern stations, particularly for TN, but little change or decline at central lake stations. Sediment resuspension and tributary nutrient loads were considered to be responsible for some of the variability among stations. Our results indicate that temporal trends in water quality may be station specific in large lakes and that calculated whole-lake trophic status trends or responses to management actions may be specific to the station(s) selected for monitoring and analysis. These results have important implications for efficient design of monitoring programs that are intended to integrate the natural spatial variability of large lakes.  相似文献   

7.
Monitoring data collected from the Mingder Reservoir in Taiwan indicate that the water quality is between mesotrophic and eutrophic. Chlorophyll a concentration is higher in the summer and anoxic conditions occur in the bottom. The data also reveal that a pronounced vertical thermal gradient in summer and vertical mixing the end of fall. A vertical two-dimensional, laterally averaged hydrodynamic and water quality model (CE-QUAL-W2) was adopted to simulate the water surface elevation, water temperature, and water quality conditions in the water column. The modeling effort was supported with monitoring data collected in the field for a 2-year period in the reservoir. The hydrodynamic model reproduced the time series water surface elevation. Spatial and temporal distributions of temperature in the water column of the reservoir were also well reproduced by the hydrodynamic model. Model-calculated concentrations of key water quality constituents such as nutrients, dissolved oxygen, and algal biomass matched the measured values closely in the reservoir. The calibrated model was then applied to simulate water quality response to various nutrient reduction scenarios. Results of the model scenario runs reveal that a 20% and 80% reduction of the phosphorus loads will improve the water quality from eutrophic to mesotrophic and oligotrophic conditions, respectively. The modeling effort has yielded valuable information that can be used by decision makers for the evaluation of different management strategies of reducing watershed nutrient loads.  相似文献   

8.
National data from the hydrological network for 38 rivers out of 25 watersheds were used to detect spatial and temporal trends in water quality and quantity characteristics between 1995 and 2002. Assessment of water quality and quantity included flow rate, water temperature, pH, electrical conductivity, sodium adsorption rate, Na, K, Ca+Mg, CO3, HCO3, Cl, SO4, and boron. Among the major ions assessed on a watershed basis, Turkish river waters are relatively high in Ca+Mg, Na and HCO3, and low in K and CO3. The watersheds in Turkey experienced a general trend of 16% decrease in flow rates between 1995 and 2002 at a mean annual rate of about 4 m3 s?1, with a considerable spatial variation. Similarly, there appeared to be an increasing trend in river water temperature, at a mean annual rate of about 0.2°C. A substantial proportion of watersheds experienced an increase in pH, in particular, after 1997, with a maximum increase from 8.1 to 8.4 observed in Euphrates (P?R 2 values in accounting for variations of pH and water temperature only. The findings of the study can provide a useful assessment of controls over water quality and quantity and assist in devising integrated and sustainable management practices for watersheds at the regional scale in Turkey.  相似文献   

9.
宁夏典农河是黄河宁夏段的主要入黄排水沟之一,其水质状况对黄河宁夏-内蒙古段跨省流域水质安全至关重要。选取典农河2011—2020年10个监测点位的16项水质参数,采用综合污染指数(WPI)法,结合相关性分析、主成分分析、聚类分析等分析方法,综合分析该流域水污染特征,并对污染程度进行评估,对污染因子和污染原因进行解析,最终提出管控建议。研究结果表明:2011—2020年,影响典农河水质的主要污染因子为CODCr、NH3-N、TP、TN,对应的年均浓度范围分别为22.3~71.5、0.64~9.09、0.173~0.662、2.89~21.52 mg/L,超标率分别为46%、8%、13%、85%。典农河2011—2020年WPI范围为0.59~1.74,重金属含量一直维持在较低水平。流域TN与TP年均浓度比值范围为20~84,整体呈下降趋势,且各监测点的差异性逐渐减小;BOD5与CODCr浓度比值范围为0.02~0.19,反映出典农河流域水体可生化性较差。各监测断面污染物之间存在较强相关性,其中:流域C...  相似文献   

10.
Surface water quality is vulnerable to pollution due to human activities. The upper reach of the Hun River is an important water source that supplies 52 % of the storage capacity of the Dahuofang Reservoir, the largest reservoir for drinking water in Northeast China, which is suffering from various human-induced changes in land use, including deforestation, reclamation/farming, urbanization and mine exploitation. To investigate the impacts of land use types on surface water quality across an anthropogenic disturbance gradient at a local scale, 11 physicochemical parameters (pH, dissolved oxygen [DO], turbidity, oxygen redox potential, conductivity, biochemical oxygen demand [BOD5], chemical oxygen demand [COD], total nitrogen [TN], total phosphorus [TP], NO 3 ? -N, and NH 4 + -N) of water from 12 sampling sites along the upper reach of the Hun River were monitored monthly during 2009–2010. The sampling sites were classified into four groups (natural, near-natural, more disturbed, and seriously disturbed). The water quality exhibited distinct spatial and temporal characteristics; conductivity, TN, and NO 3 ? -N were identified as key parameters indicating the water quality variance. The forest and farmland cover types played significant roles in determining the surface water quality during the low-flow, high-flow, and mean-flow periods based on the results of a stepwise linear regression. These results may provide incentive for the local government to consider sustainable land use practices for water conservation.  相似文献   

11.
海口市城区不同下垫面降雨径流污染特征   总被引:4,自引:0,他引:4  
分析海口市4种主要下垫面的径流水质,研究其污染程度和变化规律,并与国内其他城市进行对比。监测项目包括pH、SS、CODCr、TN、TP、Pb、Cr、Cd、Zn、石油类。结果表明,各下垫面径流水样水质较好,除路面径流CODCr超过《地表水环境质量标准》(GB 3838—2002)V类标准2倍,其他水质指标均达到标准要求;各污染物浓度初期较高,随降雨历时降低并趋于稳定,绿地径流污染物浓度下降速率比路面与屋面缓慢;相比国内其他海边城市,海口城区污染程度较轻。  相似文献   

12.
富营养化湖泊叶绿素a时空变化特征及其影响因素分析   总被引:1,自引:0,他引:1  
基于内蒙古乌梁素湖区20个监测点5、7、9、11月的监测数据,分析水体中叶绿素a浓度时空变化情况。同时,分析水体中总氮、总磷、氨氮、硝酸盐氮、COD、p H、总有机碳与叶绿素a的相关性。结果显示,叶绿素a浓度呈现由西北向东南逐渐减少的趋势,而浓度峰值出现在7月下旬,低值出现在11月下旬。相关因素与叶绿素a的相关性呈复杂性,线性拟合结果显示,与COD没有明显相关性;与总有机碳呈弱负相关性,与p H呈负相关性;而与总磷、总氮、氨氮、硝酸盐氮呈正相关性。期望该研究为干旱区湖泊水体富营养化控制和水资源管理提供科学依据。  相似文献   

13.
The maintenance of limnological monitoring programs in the Cerrado Domain is crucial as a provision of useful information about temporal variations in land use and their respective water quality responses, considering its importance as water source for different Brazilian hydrographic basins. The purpose of this research was to describe limnological variables of low-order lotic systems located in the Cerrado Long Term Ecological Research (LTER) site (Environmental Protection Area (APA) Gama and Cabeça de Veado, Federal District of Brazil). Altogether, nine different streams were considered in this study. Samplings were conducted between 2010 and 2012, concentrated in the dry and rainy seasons. The sampling sites were generally characterized by low nutrient concentrations (e.g., medians, TP?=?14.8 μg L?1, TN?=?20.0 μg L?1, NO3?=?13.8 μg L?1) and slightly acidic waters (median, pH?=?5.3), with quite low electrical conductivity values (median?=?6.4 μS cm?1). However, water quality degradation as a response to diffuse pollution was reported in some sampling points (e.g., Onça and Gama streams), expressed by relatively higher N and P concentrations, which were probably highlighted by the good water quality of the data set as whole. Although there was a trend to higher values of nitrogen forms during the dry season, significant statistical differences between the seasonal periods were reported only for the variables temperature and dissolved silica, which were higher in the dry and rainy season, respectively. The streams located in the preserved areas inside the ecological stations of APA Gama and Cabeça de Veado can still be considered good examples of reference lotic systems in the Cerrado Domain; notwithstanding, this study reported incipient signs of water quality degradation which cannot be overlooked in future limnological monitoring.  相似文献   

14.
Spatial and seasonal differences in water quality of drainage water and unconfined shallow groundwater were related to irrigation in Samandağ, a Mediterranean coastal region. Eighteen wells, seven drainage points and Orontes River were monitored bimonthly for one year for analyses of electrical conductivity (EC), total dissolved solids (TDS), sodium adsorption ratio (SAR), cations (Na, K, Ca + Mg) and anions (CO3, HCO3, Cl and SO4). Agricultural irrigation using saline groundwater decreased water quality of Orontes River during the irrigation season (May to September) more than during the non-irrigation season (October to April). Seasonal fluctuations in water quality of shallow groundwater were greater during the irrigation season than the non-irrigation season in the study area. Excessive use of groundwater resulted in a decline in the water table levels in the irrigation season. Water table level rose up to the soil surface in areas where there was a lack of drainage or poor drainage, due to the impact of precipitation in the winter. SAR and pH values of drainage water increased in the irrigation season, while the other properties of drainage water decreased. Irrigation water quality of Orontes River was classified as C3S1 in both seasons. Irrigation water quality of shallow groundwater and drainage water varied from C2S1 to C4S2 in one year. Drainage and well waters were found to be different on yearly basis in terms of Na, SAR (p<0.01) and Ca + Mg concentrations (p<0.001). Ca + Mg concentrations for both sources were different for all sampling dates (p<0.001).  相似文献   

15.
滇池东南岸农业和富磷区入湖河流地表径流及污染特征   总被引:6,自引:1,他引:5  
应用聚类分析与因子分析方法,通过8次常规监测,对滇池东南岸10条以农业面源和受磷矿开采区影响的入湖河流的地表径流及其水质污染特征进行了分析,并探讨了其空间差异性。在南岸选取降雨过程相同的3条河流,开展暴雨径流监测,探讨污染物在降雨过程中的流失特征。结果表明,新宝象河的平均流量为2.6 m3/s,占总入湖流量的26.5%;总氮、总磷、化学需氧量、悬浮物是滇池的主要污染指标,许多河流均已严重超标。河流水质在空间上可分为3类,具有明显的空间差异性。总氮、总磷、溶解磷、硝态氮对水质污染的贡献率达到了53.636%,氮、磷含量是河流水质污染的主要贡献因子。降雨条件下化学需氧量、悬浮物浓度增长迅速,流量、悬浮物与大多数水质指标均有相关性,磷矿开采对河流水质的影响在降雨条件下更加明显,其悬浮物浓度在降雨条件下比只受农业面源影响的河流最高高出1.9倍。  相似文献   

16.
The detection of significant (short-term) time trends is one of the major goals of ground water monitoring networks. These trends can be used to recognize active geochemical processes and potential environmental threats. This paper presents a case history of time trend analysis on macrochemical parameters of ground water quality. It shows the difficulties and traps that are generally encountered in such studies. The data used originated from the Dutch National Groundwater Quality Monitoring Network. This network is operative since 1979, and keeps track of the ground water composition at 350 locations at two depths (ca. 10 and 25 m below surface; general density, one location per 100 km2). Prior to the trend analysis the data set was divided into geochemically homogeneous groups using fuzzy c-means clustering. Each group represents a specific ground water type, characterized by a distinct source (seawater, surface water or precipitation) and a unique combination of dominant geochemical processes (e.g. mineralization of organic matter, carbonate dissolution and cation exchange).To study trends qualitatively, the concentrations of the various macro-constituents in ground water are correlated with time of sampling. The nonparametric and outlier insensitive Spearman rank correlation coefficient is computed per well screen. A frequency distribution of correlation coefficients is formed by combining the Spearman correlation coefficients of all individual wells within a homogeneous group. This distribution is tested for trends against the appropriate theoretical distribution of zero correlation by use of the Kolmogorov-Smirnov one-sample test. The type of trend is derived from the shape of the distribution.Most ground water types show statistically significant qualitative trends, of which many, however, are caused by changes in the sampling and analytical procedures over the monitoring period. After elimination of differences in limits of detection for NO3, total-P, and NH4, most trends in these compounds disappeared. In some water types trends for alkalinity, apparent trends for pH, Ec, and total-P are caused by variations in the laboratory practice, e.g. varying storage procedures, leading to erroneous analyses. Other parameters showed statistically significant trends, related to geochemical processes.The most interesting and most substantial trends are observed in the water type characterized by infiltrating rainwater with agricultural pollutants. In this water type the lowering ground water table induces lower rates of evapotranspiration, giving lower concentrations in time of conservative parameters (Cl, Na, Ca). The aerated zone is enlarged, resulting in increased oxidation of organic material, less efficient nutrient (NO3, K) uptake by plant roots, leading to increased ground water concentrations of nutrients. In other water types trends are quantitatively small. However, trends are not necessarily linear, and all should be closely monitored in future.  相似文献   

17.
Our objective was to evaluate changes in water quality parameters during 1983–2007 in a subtropical drinking water reservoir (area: 7 km2) located in Lake Manatee Watershed (area: 338 km2) in Florida, USA. Most water quality parameters (color, turbidity, Secchi depth, pH, EC, dissolved oxygen, total alkalinity, cations, anions, and lead) were below the Florida potable water standards. Concentrations of copper exceeded the potable water standard of <30 μg?l?1 in about half of the samples. About 75 % of total N in lake was organic N (0.93 mg?l?1) with the remainder (25 %) as inorganic N (NH3-N: 0.19, NO3-N: 0.17 mg?l?1), while 86 % of total P was orthophosphate. Mean total N/P was <6:1 indicating N limitation in the lake. Mean monthly concentration of chlorophyll-a was much lower than the EPA water quality threshold of 20 μg?l?1. Concentrations of total N showed significant increase from 1983 to 1994 and a decrease from 1997 to 2007. Total P showed significant increase during 1983–2007. Mean concentrations of total N (n?=?215; 1.24 mg?l?1) were lower, and total P (n?=?286; 0.26 mg?l?1) was much higher than the EPA numeric criteria of 1.27 mg total N l?1 and 0.05 mg total P l?1 for Florida’s colored lakes, respectively. Seasonal trends were observed for many water quality parameters where concentrations were typically elevated during wet months (June–September). Results suggest that reducing transport of organic N may be one potential option to protect water quality in this drinking water reservoir.  相似文献   

18.
Qinghai Lake, situated on the Qinghai–Tibet plateau, is the largest lake in China. In this study, the water and sediment quality were investigated in Qinghai Lake, three sublakes, and five major tributaries. Both Na+ and Cl? were found to be the major ions present in Qinghai Lake and the three sublakes, while Ca2+ and HCO3? dominated the tributaries. Compared with historical data from the 1960s, the concentrations of NH4 +, NO3 ?, and soluble reactive silica have increased considerably, likely caused by increased human activities in the area. Compared to the historical data, chemical oxygen demand has increased and lake water transparency has decreased, likely related to an increase in nutrient levels. Relatively high concentrations of total nitrogen (TN) and total phosphorus (TP) were observed in Qinghai Lake sediments, although P fraction types and low water concentrations of these two indicate low possibility of transfer into the water column. The ratios of C/N suggest that the organic matter in the sediments are primarily from autochthonous sources. TN and total organic carbon in the sediment cores increased slowly up the core while TP and total inorganic carbon have been fairly constant.  相似文献   

19.
利用2012年松花江流域生物、生境和水质的调查数据,采用生物完整性指数(IBI)评价松花江流域的水生态环境质量,并着重对IBI评价结果与生境质量、水质间的关系及生物与生境和化学参数间的相关关系进行了分析。结果表明,松花江流域IBI评价结果与其生境质量存在显著正相关,与水质评价结果基本一致。生境质量及大多数生境参数均与多项生物参数间存在显著/极显著的相关关系;其次,COD、CODMn、BOD5、TN、TP等超标化学因子也与多项生物参数存在显著/极显著的相关关系,说明生境受损和有机污染压力是引起松花江流域水生态环境质量变化的主要压力。为恢复和改善松花江流域的水生态质量,研究建议针对流域生境质量和超标化学污染开展相应的保护和控制措施。  相似文献   

20.
Fixed station sampling is the conventional method used to obtain data on the median water quality of reservoirs. A major source of uncertainty associated with this technique is that water quality at the fixed stations may not be representative of the ambient water quality in the reservoir at the time of sampling. This problem is particularly relevant for water quality variables such as chlorophyll, which have a markedly patchy spatial distribution. The use of Landsat reflectance data to estimate median chlorophyll concentrations in Roodeplaat Dam was investigated. A linear polynomial regression model for estimating chlorophyll concentrations from Landsat reflectance data, was firstly calibrated with chlorophyll concentration data obtained by sampling seven fixed stations on the reservoir at the time of the satellite overflight to produce an individual calibration. Secondly, the model was calibrated with a pooled set of sampled data obtained from five separate overflights, to obtain a generalised calibration.It was found that median chlorophyll concentrations determined from Landsat-derived data were similar to median chlorophyll concentrations estimated from fixed station data. However, the range of chlorophyll concentrations in the reservoir estimated from Landsat data was considerably larger than that estimated from fixed station data. Landsat derived estimates of chlorophyll concentrations have the added advantage of providing information on the spatial distribution of chlorophyll in the reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号