首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Trail-based recreation has increased over recent decades, raising the environmental management issue of soil erosion that originates from unsurfaced, recreational trail systems. Trail-based soil erosion that occurs near stream crossings represents a non-point source of pollution to streams. We modeled soil erosion rates along multiple-use (hiking, mountain biking, and horseback riding) recreational trails that approach culvert and ford stream crossings as potential sources of sediment input and evaluated whether recreational stream crossings were impacting water quality based on downstream changes in macroinvertebrate-based indices within the Poverty Creek Trail System of the George Washington and Jefferson National Forest in southwestern Virginia, USA. We found modeled soil erosion rates for non-motorized recreational approaches that were lower than published estimates for an off-road vehicle approach, bare horse trails, and bare forest operational skid trail and road approaches, but were 13 times greater than estimated rates for undisturbed forests and 2.4 times greater than a 2-year old clearcut in this region. Estimated soil erosion rates were similar to rates for skid trails and horse trails where best management practices (BMPs) had been implemented. Downstream changes in macroinvertebrate-based indices indicated water quality was lower downstream from crossings than in upstream reference reaches. Our modeled soil erosion rates illustrate recreational stream crossing approaches have the potential to deliver sediment into adjacent streams, particularly where BMPs are not being implemented or where approaches are not properly managed, and as a result can negatively impact water quality below stream crossings.  相似文献   

2.
/ Various types of recreational traffic impact hiking trails uniquely and cause different levels of trail degradation; however, trail head restrictions are applied similarly across all types of packstock. The purpose of this study was to assess the relative physical impact of hikers, llamas, and horses on recreational trails. Horse, llama, and hiker traffic were applied to 56 separate plots on an existing trail at Lubrecht Experimental Forest in western Montana. The traffic was applied to plots at intensities of 250 and 1000 passes along with a no-traffic control under both prewetted and dry trail conditions. Soil erosion potential was assessed by sediment yield and runoff (using a Meeuwig type rainfall simulator), changes in soil bulk density, and changes in soil surface roughness. Soil moisture, slope, and rainfall intensity were recorded as independent variables in order to evaluate the extent that they were held constant by the experimental design. Horse traffic consistently made more sediment available for erosion from trails than llama, hiker, or no traffic when analyzed across wet and dry trail plots and high and low intensity traffic plots. Although total runoff was not significantly affected by trail user, wet trail traffic caused significantly greater runoff than dry trail traffic. Llama traffic caused a significant increase in sediment yield compared to the control, but caused erosion yields not significantly different than hiker traffic. Trail traffic did not increase soil compaction on wet trails. Traffic applied to dry trail plots generally resulted in a significant decrease in soil bulk density compared to the control. Decreased soil bulk density was negatively correlated with increased sediment yield and appeared to result in increased trail roughness for horse traffic compared to hiker or llama traffic. Differences described here between llama and horse traffic indicate that trail managers may want to consider managing packstock llamas independent of horses.KEY WORDS: Recreational impacts; Sediment yield; Trail degradation  相似文献   

3.
Trail settings in national parks are essential management tools for improving both ecological conservation efforts and the quality of visitor experiences. This study proposes a plan for the appropriate maintenance of trails in Chubusangaku National Park, Japan, based on the recreation opportunity spectrum (ROS) approach. First, we distributed 452 questionnaires to determine park visitors’ preferences for setting a trail (response rate = 68 %). Respondents’ preferences were then evaluated according to the following seven parameters: access, remoteness, naturalness, facilities and site management, social encounters, visitor impact, and visitor management. Using nonmetric multidimensional scaling and cluster analysis, the visitors were classified into seven groups. Last, we classified the actual trails according to the visitor questionnaire criteria to examine the discrepancy between visitors’ preferences and actual trail settings. The actual trail classification indicated that while most developed trails were located in accessible places, primitive trails were located in remote areas. However, interestingly, two visitor groups seemed to prefer a well-conserved natural environment and, simultaneously, easily accessible trails. This finding does not correspond to a premise of the ROS approach, which supposes that primitive trails should be located in remote areas without ready access. Based on this study’s results, we propose that creating trails, which afford visitors the opportunity to experience a well-conserved natural environment in accessible areas is a useful means to provide visitors with diverse recreation opportunities. The process of data collection and analysis in this study can be one approach to produce ROS maps for providing visitors with recreational opportunities of greater diversity and higher quality.  相似文献   

4.
Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.  相似文献   

5.
Factors influencing sediment availability are assessed and erosion rates are quantified for an off‐highway vehicle (OHV) trail system in the Ouachita Mountains of Arkansas. As of May 2012, the Wolf Pen Gap trail system included 77.0 km of "trails" which consist of county roads; open and closed Forest Service roads; and open and closed OHV trails. For a given trail length, the sediment volume available to be eroded is determined by bare trail width and sediment depth. Four condition types are defined that group trail sections based on statistically different trail widths or depths. Trail construction method appears to influence sediment availability differences more than erosion potential (as indexed by trail slope gradient and length). The range for annual trail erosion rates is estimated as 75 and 210 tonne/ha/yr. The high and low rates are obtained using two independent methods. The 210 tonne/ha/yr rate is computed from mean sediment capture at 30 sediment traps installed for 0.5–1.0 year. The 75 tonne/ha/yr rate is computed assuming all available trail sediment measured in a one‐time sampling is eroded over the next year. We argue in support of this assumption and suggest both rate values may be conservative. Trail erosion rates and sediment trap observations indicate frequent trap cleanout will be needed to continue sediment capture from All Terrain Vehicle trails.  相似文献   

6.
Introduced species pose a major threat to biodiversity across the globe. Understanding the impact of introduced species is critical for effective management. Many species around the world are reliant on tree cavities, and competition for these resources can be intense: threatening the survival of native species. Through the establishment of 225 nest boxes, we examined the relationship between tree density and the abundance and nesting success of three bird species in Canberra, Australia. The common myna (Acridotheres tristis) is an introduced species in Australia, and the crimson rosella (Platycercus elegans) and eastern rosella (Platycercus eximius) are native species. We then investigated the impact of common myna nest box occupation on crimson rosella and eastern rosella abundance. Tree density significantly influenced the abundance and cavity-nesting of all three species. Common myna abundance (birds per square kilometer) was greatest at low tree density sites (101.9 ± 22.4) and declined at medium (45.4 ± 10.1) and high (9.7 ± 3.6) tree density sites. The opposite pattern was observed for the crimson rosella, with greater abundance (birds per square kilometer) at high tree density sites (83.9 ± 9.3), declining over medium (61.6 ± 6.4) and low (31.4 ± 3.9) tree density sites. The eastern rosella was more abundant at medium tree density sites (48.6 ± 8.0 birds per square kilometer). Despite the strong influence of tree density, we found a significant negative relationship between common myna nest box occupancy and the abundance of the crimson rosella (F 1,13 = 7.548, P = 0.017) and eastern rosella (F 1,13 = 9.672, P < 0.001) at some sites. We also observed a slight increase in rosella nesting interruptions by the common myna at lower tree densities (high: 1.3 % ± 1.3, medium: 6.6 % ± 2.2, low: 12.7 % ± 6.2), although this increase was not statistically significant (F 2,40 = 2.435, P = 0.100). Our study provides the strongest evidence to date for the negative impact of the common myna on native bird abundance through cavity-nesting competition. However, due to the strong influence of habitat on species abundance and nesting, it is essential to investigate the impacts of introduced species in conjunction with habitat variation. We also suggest one component of introduced species management could include habitat restoration to reduce habitat suitability for introduced species.  相似文献   

7.
Trail erosion patterns in Great Smoky Mountains National Park   总被引:3,自引:0,他引:3  
All the maintained trails in Great Smoky Mountains National Park were surveyed for width, depth, and a variety of types of erosion. Trail erosion is related to a number of environmental variables, including vegetation type, elevation, trail slope, and section of the park. Open grass balds and spruce-fir forest are the most erosion-sensitive plant communities, and the xeric oak and pine types are the least sensitive. Trails in virgin or mature forest tend to be in poorer condition than those in successional areas. The most important physical factor is the slope of the trail.Trails in the Tennessee district are in slightly poorer condition, on the average, than those in the North Carolina district, but the Appalachian Trail is more eroded than either. A poor section of the park may have ten times the erosion of a good section. On an allpark basis, water erosion is the most important problem, with 15% of the trail surface affected.A comparison of visitation patterns with trail condition indicates that redistribution of use would help to mitigate some erosion problems. Because trail condition is correlated to physical environmental factors, however, some sites will require intensive maintenance, even if visitation is low.The data from this survey have already been used in environmental analysis of proposed developments within the park and can be applied to long-range planning for the park trail system as a whole.  相似文献   

8.
Depending on gender and activity, overcrowding and safety concerns may detract from urban green space use. Differences in use displacement intentions from a recreational trail in a forest in Vienna were investigated for male and female walkers as well as male and female dog-walkers (N = 425) using an image-based stated preference model. The trail scenarios were depicted as digitally calibrated images that systematically displayed combinations of levels of crowding with different mixes of user types and visitor behaviour. Visitors were asked whether the presented recreation scenario was so unacceptable that they would shift their use away from the presented trail. Hours and days of stated non-use of the recreation trail by various user groups are estimated by integrating the results of the behavioural model with annual visitation data. Use displacement intentions differed by gender and activity. High use levels were a greater concern for all respondents than very low use levels, particularly for female dog-walkers. However, only a small proportion of the recorded hours were heavily used. Safety concerns about very low use levels reduced the potential times of forest use for female walkers without a dog.  相似文献   

9.
Hiking, horse riding and mountain biking are popular in protected areas in Australia and the United States of America. To help inform the often contentious deliberations about use of protected areas for these three types of activities, we review recreation ecology research in both countries. Many impacts on vegetation, soils and trails are similar for the three activities, although there can be differences in severity. Impacts include damage to existing trails, soil erosion, compaction and nutrification, changes in hydrology, trail widening, exposure of roots, rocks and bedrock. There can be damage to plants including reduction in vegetation height and biomass, changes in species composition, creation of informal trails and the spread of weeds and plant pathogens. Due to differences in evolutionary history, impacts on soil and vegetation can be greater in Australia than in the USA. There are specific social and biophysical impacts of horses such as those associated with manure and urine, grazing and the construction and use of tethering yards and fences. Mountain bike specific impacts include soil and vegetation damage from skidding and the construction of unauthorised trails, jumps, bridges and other trail technical features. There are gaps in the current research that should be filled by additional research: (1) on horse and mountain bike impacts to complement those on hiking. The methods used need to reflect patterns of actual usage and be suitable for robust statistical analysis; (2) that directly compares types and severity of impacts among activities; and (3) on the potential for each activity to contribute to the spread of weeds and plant pathogens. Additional research will assist managers and users of protected areas in understanding the relative impacts of these activities, and better ways to manage them. It may not quell the debates among users, managers and conservationists, but it will help put it on a more scientific footing.  相似文献   

10.
ABSTRACT: The seemingly magnetic attraction of water resources for recreation has direct implications for proximate land resources which are needed to provide access and support facilities. This paper reviews and synthesizes the literature dealing with the impacts of recreation use on riparian soils and vegetation. Part one of the paper sets forth the major negative impacts of recreation use on soils and vegetation. A seven-step soil impact cycle is identified, beginning with the scuffing away of leaf litter and other organic material and working through the soil erosion and sedimentation process. Four major kinds of impacts of recreation use on vegetation are then outlined, and the‘Vicious circle” relationship between impacts on soil and vegetation is demonstrated through a Soil/Vegetation Impact Diagram. Part two identifies several spatial and temporal patterns of environmental impact caused by recreation use. The node and linkage pattern of recreation use, campground and trail expansion, ground cover response and succession, rates of soil compaction, and resource response to various intensities of recreation use are important aspects. The final part of the paper deals with measuring environmental impacts caused by recreation use. Management implications of the research findings are considered throughout the paper.  相似文献   

11.
The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha?1 h?1), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha?1), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha?1) despite the high rainfall erosivity during that season (196.6 MJ mm ha?1 h?1). The predicted annual soil loss was 15.1 t ha?1, and the sediment amount delivery was 4,314 × 103 kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.  相似文献   

12.
Managing Recreational Trail Environments for Mountain Bike User Preferences   总被引:1,自引:0,他引:1  
N  = 406), highlight some important issues concerning the design and management of wildland recreation environments that are primarily used for mountain biking. For example, bikers were found to significantly prefer water bars above all other tested soil erosion management techniques; trail erosion factors, including the presence of rocks, roots, and gullies, all added to biking experiences on average; trail design factors, such as the presence of turns, bumps, jumps, and obstacles, all added to biking experiences in general. These findings were used to address questions that resource managers should consider when striving to effectively manage wildland recreation areas primarily used for mountain biking.  相似文献   

13.
Recreational uses of unsurfaced trails inevitably result in their degradation, with the type and extent of resource impact influenced by factors such as soil texture, topography, climate, trail design and maintenance, and type and amount of use. Of particular concern, the loss of soil through erosion is generally considered a significant and irreversible form of trail impact. This research investigated the influence of several use-related, environmental, and managerial factors on soil loss on recreational trails and roads at Big South Fork National River and Recreation Area, a unit of the U.S. National Park Service. Regression modeling revealed that trail position, trail slope alignment angle, grade, water drainage, and type of use are significant determinants of soil loss. The introduction of individual and groups of variables into a series of regression models provides improved understanding and insights regarding the relative influence of these variables, informing the selection of more effective trail management actions. Study results suggest that trail erosion can be minimized by avoiding “fall-line” alignments, steep grades, and valley-bottom alignments near streams, installing and maintaining adequate densities of tread drainage features, applying gravel to harden treads, and reducing horse and all-terrain vehicle use or restricting them to more resistant routes.  相似文献   

14.
This study examines the establishment patterns of exotic and ruderal species along trail corridors in grassland areas of the Colorado Front Range. The effects of trail presence, trail age, and trail traffic levels on exotic and ruderal species establishment are explored to ascertain the potential impacts of trails on surrounding vegetation. Established trails exhibited a greater presence of exotic and ruderal species along the immediate trailside, showing that disturbed trailsides tend to encourage the growth of these species over time. Furthermore, the established trails exhibited significantly less native, nonruderal, and overall species richness at the trailside. These trailside patterns did not show a significant spread away from the trail edge, even after prolonged time periods. Finally, higher trail use tended to hasten the establishment of exotic species along the trailside. The trails did not introduce new species to the recreation areas; rather they acted as reorganizational tools for species that were already present in the study sites.  相似文献   

15.
Soil erosion from agricultural land use runoff is a major threat to the sustainability of soil composition and water resource integrity. Sugarcane is an important cash and food security crop in South Africa, subjected to an intensive soil erosion, and consequently, severe land degradation. This study aimed to investigate soil erosion and associated soil and cover factors under rainfed sugarcane, in a small catchment, KwaZulu‐Natal, South Africa. Three replicated runoff plots were installed at different slope positions (down, mid and upslope) within cultivated sugarcane fields to monitor soil erosion during the 2016–2017 rainy season. On average, annual runoff (RF) was significantly greater from 10 m2 plots with 1163.77 ± 2.63 l/m/year compared to 1 m2 plots. However, sediment concentration (SC) was significantly lower in 10 m2 (0.34 ± 0.04 g/l) compared to 1 m2 (6.94 ± 0.24 g/l) plots. The annual soil losses (SL) calculated from 12 rainfall events was 58.36 ± 0.77 and 8.84 ± 0.20 t/ha from 1 m2 and 10 m2 plots, respectively. The 1 m2 plot, SL (2.4 ± 1.41 ton/ha/year) in the upslope experienced 33% more loss than the midslope and 50% more loss than the downslope position. SL was relatively lower from the 10 m2 plots than the 1 m2 plots, which is explained by high sediment deposition at the greater plot scale. SL was negatively correlated with the soil organic carbon stocks (r = ?0.82) and soil surface cover (r = ?0.55). RF decreased with the increase of slope gradient (r = ?0.88) and soil infiltration rate (r = ?0.87). There were considerable soil losses from cultivated sugarcane fields with low organic matter. These findings suggest that to mitigate soil erosion, soil organic carbon stocks and vegetation cover needs to be increased through appropriate land management practices, particularly in cultivated areas with steep gradients.  相似文献   

16.
Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and tree species diversity and composition. Before logging, we marked, mapped, and measured all trees >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and tree damage due to felling, skidding, and road-related activities was then assessed 2–3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m3/ha (0.39 trees/ha) and 11.4 m3/ha (0.76 trees/ha). For each tree felled, averages of 9.1 and 20.9 other trees were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in tree species composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities.  相似文献   

17.
Environmental effects of soil property changes with off-road vehicle use   总被引:1,自引:0,他引:1  
The effects of off-road vehicles (ORVs) on the physical and chemical properties of 6 soil series were measured at Hollister Hills State Vehicular Recreation Area in central California. Accelerated soil erosion and the alteration of surface strength, bulk density, soil moisture, temperature, and soil nutrients were quantified to gain an insight into the difficulty of revegetating altered, or modified, areas.Erosion is severe at Hollister Hills, particularly in coarse grained soils on steep slopes. Erosion displaced 0.5 and 3.0 metric tons per square meter on 2 trails on gravelly sandy loam, and 0.3 metric tons/m2 from a trail on sandy loam. The surface strength and bulk density increased while the soil moisture decreased in gravelly sandy loam, coarse sandy loam, sandy loam, and clay. Clay loam had an increased surface strength with variably increased bulk density and no decrease in soil moisture. Diurnal temperature fluctuations increased and organic material and soil nutrients decreased in soil modified by vehicles.These property changes increase the erosion potential of the soil, impede germination of seedlings, and slow natural revegetation. Management methods in ORV-use areas should include planning trails by prior application of the universal soil loss equation and soil surveys, trail closure before complete loss of the soil mantle, and revegetation of closed areas.  相似文献   

18.
Conservation Area Management Committees (CAMCs)—the functional decision-making units consisting entirely of local villagers—are grassroots organizations legally established to manage the Annapurna Conservation Area (ACA) in Nepal. These committees suffered due to the decade-long Maoist insurgency, but they survived. The paper attempts to test what factors contributed to their resiliency. For this, I surveyed 30 CAMCs during the summer of 2007 and conducted semi-structured interviews of 190 executive members of the CAMCs and 13 park officials who closely monitor the CAMCs. Regression results showed that the number of leaders (b = 0.44, t = 2.38, P = .027) was the most critical variable for building the resilience of CAMCs to the Maoist insurgency, i.e., retaining the same function, structure, and identity of the committees. As there were no reported conflicts among leaders and they were involved in negotiations and devising contingency plans, CAMCs actually benefited from having more leaders. Of the three diversity indices, the quadratic terms of age diversity (b = ?5.42, t = 1.95, P = .064) and ethnic diversity (b = ?4.05, t = 1.78, P = .075) had a negative impact on the CAMCs’ resilience. Skill diversity and organizational memory had no significant influence on the CAMCs’ resilience (t < 1.48, P > .10). These results have important implications for building resilience in community-based conservation.  相似文献   

19.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

20.
Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the Relative differenced Normalized Burn Ratio, a satellite image-based change detection procedure commonly used to map burn severity, with output from the Fire Hazard and Risk Model, a simulation model that estimates fire effects at a landscape scale. Using 285 Composite Burn Index (CBI) plots in Washington and Montana as ground reference, we found that an integrated model explained more variability in CBI (R 2 = 0.47) and had lower mean squared error (MSE = 0.28) than image (R 2 = 0.42 and MSE = 0.30) or simulation-based models (R 2 = 0.07 and MSE = 0.49) alone. Overall map accuracy was also highest for maps created with the Integrated Model (63 %). We suspect that Simulation Model performance would greatly improve with higher quality and more accurate spatial input data. Results of this study indicate the potential benefit of combining satellite image-based methods with a fire effects simulation model to create improved burn severity maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号