首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.  相似文献   

2.
In spring 2011, an unprecedented flood hit the complex eastern United States (U.S.)–Canada transboundary Lake Champlain–Richelieu River (LCRR) Basin, destructing properties and inducing negative impacts on agriculture and fish habitats. The damages, covered by the Governments of Canada and the U.S., were estimated to C$90M. This natural disaster motivated the study of mitigation measures to prevent such disasters from reoccurring. When evaluating flood risks, long‐term evolving climate change should be taken into account to adopt mitigation measures that will remain relevant in the future. To assess the impacts of climate change on flood risks of the LCRR basin, three bias‐corrected multi‐resolution ensembles of climate projections for two greenhouse gas concentration scenarios were used to force a state‐of‐the‐art, high‐resolution, distributed hydrological model. The analysis of the hydrological simulations indicates that the 20‐year return period flood (corresponding to a medium flood) should decrease between 8% and 35% for the end of the 21st Century (2070–2099) time horizon and for the high‐emission scenario representative concentration pathway (RCP) 8.5. The reduction in flood risks is explained by a decrease in snow accumulation and an increase in evapotranspiration expected with the future warming of the region. Nevertheless, due to the large climate inter‐annual variability, short‐term flood probabilities should remain similar to those experienced in the recent past.  相似文献   

3.
ABSTRACT: Simulated daily precipitation, temperature, and runoff time series were compared in three mountainous basins in the United States: (1) the Animas River basin in Colorado, (2) the East Fork of the Carson River basin in Nevada and California, and (3) the Cle Elum River basin in Washington State. Two methods of climate scenario generation were compared: delta change and statistical downscaling. The delta change method uses differences between simulated current and future climate conditions from the Hadley Centre for Climate Prediction and Research (HadCM2) General Circulation Model (GCM) added to observed time series of climate variables. A statistical downscaling (SDS) model was developed for each basin using station data and output from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEPINCAR) reanalysis regridded to the scale of HadCM2. The SDS model was then used to simulate local climate variables using HadCM2 output for current and future conditions. Surface climate variables from each scenario were used in a precipitation‐runoff model. Results from this study show that, in the basins tested, a precipitation‐runoff model can simulate realistic runoff series for current conditions using statistically down‐scaled NCEP output. But, use of downscaled HadCM2 output for current or future climate assessments are questionable because the GCM does not produce accurate estimates of the surface variables needed for runoff in these regions. Given the uncertainties in the GCMs ability to simulate current conditions based on either the delta change or downscaling approaches, future climate assessments based on either of these approaches must be treated with caution.  相似文献   

4.
The source of the Richelieu River is Lake Champlain, located between the states of New York, Vermont, and Québec. In 2011, the lake and the Richelieu River reached historical flood levels, raising questions about the influence of climate change on the watershed. The objectives of this work are to model the hydrology of the watershed, construct a reservoir model for the lake and to analyze flooding trends using climate simulations. The basin was modeled using the HSAMI lumped conceptual model from Hydro‐Québec with a semi‐distributed approach in order to estimate the inflows into Lake Champlain. The discharge at the Richelieu River was computed by using a mass balance equation between the inputs and outputs of Lake Champlain. Future trends were estimated over the 2041‐2070 and 2071‐2100 periods using a large number of outputs from general circulation models and regional climate models downscaled with constant scaling and daily translation methods. While there is a certain amount of uncertainty as to future trends, there is a decreasing tendency in the magnitude of the mean spring flood. A flood frequency analysis showed most climate projections indicate the severity of most extreme spring floods may be reduced over the two future periods although results are subject to a much larger uncertainty than for the mean spring flood. On the other hand, results indicate summer‐fall extreme events such as caused by hurricane Irene in August 2011 may become more frequent in the future.  相似文献   

5.
Scenario‐based and scenario‐neutral impacts assessment approaches provide complementary information about how climate change‐driven effects on streamflow may change the operational performance of multipurpose dams. Examining a case study of Cougar Dam in Oregon, United States, we simulated current reservoir operations under scenarios of plausible future hydrology. Streamflow projections from the CGCM3.1 general circulation model for the A1B emission scenario were used to generate stochastic reservoir inflows that were then further perturbed to simulate a potentially drier future. These were then used to drive a simple reservoir model. In the scenario‐based analysis, we found reservoir operations are vulnerable to climate change. Increases in fall and winter inflow could lead to more frequent flood storage, reducing flexibility to store incoming flood flows. Uncertainty in spring inflow volume complicates projection of future filling performance. The reservoir may fill more or less often, depending on whether springs are wetter or drier. In the summer, drawdown may occur earlier to meet conservation objectives. From the scenario‐neutral analysis, we identified thresholds of streamflow magnitude that can predict climate change impacts for a wide range of scenarios. Our results highlight projected operational challenges for Cougar Dam and provide an example of how scenario‐based and scenario‐neutral approaches may be applied concurrently to assess climate change impacts.  相似文献   

6.
Terminal lakes are impacted by regional changes in climate. Devils Lake (DL), North Dakota, United States (U.S.), is a case in which a prolonged shift in the precipitation pattern resulted in a 10‐m water‐level rise over the past two decades, which cost over one billion U.S. dollars in mitigation. Currently, DL is 1.5 m from an uncontrolled overspill to the nearby Sheyenne River, which could lead to unprecedented environmental, social, and economic costs. Water outlets recently implemented in the lake to slow the water‐level rise and prevent an uncontrolled overspill are subject to significant concerns over the introduction of invasive species and downstream water quality. We developed a hydrological model of the DL basin using the soil and water assessment tool and analyzed DL's overspill probability using an ensemble of statistically downscaled General Circulation Model (GCM) projections of the future climate. The results indicate a significant likelihood (7.3‐20.0%) of overspill in the next few decades in the absence of outlets; some members of the GCM integration ensemble suggest an exceedance probability of over 85.0 and 95.0% for the 2020s and 2050s, respectively. Full‐capacity outlets radically reduce the probability of DL overspill and are able to partially mitigate the problem by decreasing the average lake level by approximately 1.9 and 1.5 m in the 2020s and 2050s, respectively.  相似文献   

7.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   

8.
The river Paz is a transboundary river that flows through Guatemala and El Salvador. Its frequent floods endanger the lives and livelihoods of downstream communities. Attempts have previously been made to develop flood management programmes for this watershed. However, these approaches were generally made by high-level governmental institutions with few if any contributions from floodplain communities and other stakeholders. Recognising that public consultation is a key aspect in flood management programmes, we intend in this work to extract different stakeholders' views regarding current and future flooding and flood management programmes in the Paz River basin. This is achieved using Future Scenarios Workshops with a projected time horizon of 30 years. The exercise was expected to identify consensual short- and medium–long-term flood management strategies for the Paz River basin that draws on input from inhabitants of flood-prone areas and other stakeholders.  相似文献   

9.
This article couples two existing models to quickly generate flow and flood‐inundation estimates at high resolutions over large spatial extents for use in emergency response situations. Input data are gridded runoff values from a climate model, which are used by the Routing Application for Parallel computatIon of Discharge (RAPID) model to simulate flow rates within a vector river network. Peak flows in each river reach are then supplied to the AutoRoute model, which produces raster flood inundation maps. The coupled tool (AutoRAPID) is tested for the June 2008 floods in the Midwest and the April‐June 2011 floods in the Mississippi Delta. RAPID was implemented from 2005 to 2014 for the entire Mississippi River Basin (1.2 million river reaches) in approximately 45 min. Discretizing a 230,000‐km2 area in the Midwest and a 109,500‐km2 area in the Mississippi Delta into thirty‐nine 1° by 1° tiles, AutoRoute simulated a high‐resolution (~10 m) flood inundation map in 20 min for each tile. The hydrographs simulated by RAPID are found to perform better in reaches without influences from unrepresented dams and without backwater effects. Flood inundation maps using the RAPID peak flows vary in accuracy with F‐statistic values between 38.1 and 90.9%. Better performance is observed in regions with more accurate peak flows from RAPID and moderate to high topographic relief.  相似文献   

10.
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds.  相似文献   

11.
ABSTRACT: Previous reports based on climate change scenarios have suggested that California will be subjected to increased wintertime and decreased summertime streamflow. Due to the uncertainty of projections in future climate, a new range of potential climatological future temperature shifts and precipitation ratios is applied to the Sacramento Soil Moisture Accounting Model and Anderson Snow Model in order to determine hydrologic sensitivities. Two general circulation models (GCMs) were used in this analysis: one that is warm and wet (HadCM2 run 1) and one that is cool and dry (PCM run B06.06), relative to the GCM projections for California that were part of the Third Assessment Report of the Intergovernmental Panel on Climate Change. A set of specified incremental temperature shifts from 1.5°C to 5.0°C and precipitation ratios from 0.70 to 1.30 were also used as input to the snow and soil moisture accounting models, providing for additional scenarios (e.g., warm/dry, cool/wet). Hydrologic calculations were performed for a set of California river basins that extend from the coastal mountains and Sierra Nevada northern region to the southern Sierra Nevada region; these were applied to a water allocation analysis in a companion paper. Results indicate that for all snow‐producing cases, a larger proportion of the streamflow volume will occur earlier in the year. The amount and timing is dependent on the characteristics of each basin, particularly the elevation. Increased temperatures lead to a higher freezing line, therefore less snow accumulation and increased melting below the freezing height. The hydrologic response varies for each scenario, and the resulting solution set provides bounds to the range of possible change in streamflow, snowmelt, snow water equivalent, and the change in the magnitude of annual high flows. An important result that appears for all snowmelt driven runoff basins, is that late winter snow accumulation decreases by 50 percent toward the end of this century.  相似文献   

12.
Kim, Ungtae and Jagath J. Kaluarachchi, 2009. Climate Change Impacts on Water Resources in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association (JAWRA) 45(6):1361‐1378. Abstract: Climate change affects water resources availability of international river basins that are vulnerable to runoff variability of upstream countries especially with increasing water demands. The upper Blue Nile River Basin is a good example because its downstream countries, Sudan and Egypt, depend solely on Nile waters for their economic development. In this study, the impacts of climate change on both hydrology and water resources operations were analyzed using the outcomes of six different general circulation models (GCMs) for the 2050s. The outcomes of these six GCMs were weighted to provide average future changes. Hydrologic sensitivity, flow statistics, a drought index, and water resources assessment indices (reliability, resiliency, and vulnerability) were used as quantitative indicators. The changes in outflows from the two proposed dams (Karadobi and Border) to downstream countries were also assessed. Given the uncertainty of different GCMs, the simulation results of the weighted scenario suggested mild increases in hydrologic variables (precipitation, temperature, potential evapotranspiration, and runoff) across the study area. The weighted scenario also showed that low‐flow statistics and the reliability of streamflows are increased and severe drought events are decreased mainly due to increased precipitation. Joint dam operation performed better than single dam operation in terms of both hydropower generation and mean annual storage without affecting the runoff volume to downstream countries, but enhancing flow characteristics and the robustness of streamflows. This study provides useful information to decision makers for the planning and management of future water resources of the study area and downstream countries.  相似文献   

13.
ABSTRACT: A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case.  相似文献   

14.
We performed two‐dimensional (2D) hydrodynamic modeling to aid recovery of the endangered razorback sucker (Xyrauchen texanus) by reconnecting the Green River with its historic bottomland floodplain wetlands at Ouray National Wildlife Refuge, Utah. Reconnection allows spring flood flows to overtop the river levee every two to three years, and passively transport razorback sucker larvae to the wetlands to grow in critical habitat. This study includes (1) river hydrologic analysis, (2) simulation of a levee breach/weir, overtopping of river flood flows, and 2D flow through the wetlands using Hydrologic Engineering Center River Analysis System 2D, and (3) modeling flow and restoration scenarios. Indicators of hydrologic alteration were used to evaluate river flow metrics, in particular flood magnitudes, frequency, and duration. Results showed a target spring flow of 16,000 cfs (453 m3/s) and a levee breach elevation of 4,663 ft (1,421 m) amsl would result in a median flow >6,000 acre‐feet (7.4 million m3) over five days into the wetlands, which is adequate for razorback sucker larvae transport and rearing. Modeling of flow/restoration scenarios showed using gated water control structures and passive low‐water crossings between wetland units can provide adequate control of flow movement into and storage in multiple units. Levee breaching can be a relatively simple, cost‐effective method to reconnect rivers and historic floodplains, and hydrodynamic modeling is an important tool for analyzing and designing wetland reconnection.  相似文献   

15.
The climate simulations from atmospheric general circulation models (GCMs) are often used to analyze the potential effects of climate change on environmental resources. It has been demonstrated that there are differences among the simulations from various GCMs, on spatial scales ranging from global to regional. This paper quantifies the differences in temperature and precipitation simulated by three major GCMs for four specific regions: an agricultural region (the North American winter wheat belt), a hydrologic region (the Great Basin), a demographic region (the high-density population corridor of the northeast United States), and a political region (the state of Texas). Both the current (control) climate and the climatic response to a doubling of atmospheric carbon dioxide (CO2) are consideredIn each region, even when the data are averaged on a seasonal basis, marked differences occurred in the areal average climate simulated by the different GCMs for both the control climate and the doubled-CO2 climate. Thus, climate impact studies based on the simulations of more than one GCM could easily yield a range of possible results  相似文献   

16.
ABSTRACT: A climate change impacts assessment for water resources in the San Joaquin River region of California is presented. Regional climate projections are based on a 1 percent per year CO2 increase relative to late 20th Century CO2 conditions. Two global projections of this CO2 increase scenario are considered (HadCM2 and PCM) during two future periods (2010 to 2039 and 2050 to 2079). HadCM2 projects faster warming than PCM. HadCM2 and PCM project wetter and drier conditions, respectively, relative to present climate. In the HadCM2 case, there would be increased reservoir inflows, increased storage limited by existing capacity, and increased releases for deliveries and river flows. In the PCM case, there would be decreased reservoir inflows, decreased storage and releases, and decreased deliveries. Impacts under either projection case cannot be regarded as more likely than the other. Most of the impacts uncertainty is attributable to the divergence in the precipitation projections. The range of assessed impacts is too broad to guide selection of mitigation projects. Regional planning agencies can respond by developing contingency strategies for these cases and applying the methodology herein to evaluate a broader set of CO2 scenarios, land use projections, and operational assumptions. Improved agency access to climate projection information is necessary to support this effort.  相似文献   

17.
Lee, Se‐Yeun, Alan F. Hamlet, Carolyn J. Fitzgerald, and Stephen J. Burges, 2011. Methodology for Developing Flood Rule Curves Conditioned on El Niño‐Southern Oscillation Classification. Journal of the American Water Resources Association (JAWRA) 47(1):81‐92. DOI: 10.1111/j.1752‐1688.2010.00490.x Abstract: Regional climate varies on interannual and decadal time scales that in turn affect annual streamflows, flood risks, and reservoir storage deficits in mid‐summer. However, these variable elements of the climate system are generally not included in water resources operating policies that attempt to preserve a balance between flood risk and other water resources system objectives. A methodology for incorporating El Niño‐Southern Oscillation (ENSO) information in designing flood control curves is investigated. An optimization‐simulation procedure is used to develop a set of ENSO‐conditioned flood control rule curves that relate streamflow forecasts to flood control evacuation requirements. ENSO‐conditioned simulated flood risk and storage deficits under current operating policy are used to calibrate a unique objective function for each ENSO classification. Using a case study for the Columbia River Basin, we demonstrate that ENSO‐conditioned flood control curves constructed using the optimization‐simulation procedure consistently reduce storage deficits at a number of interrelated projects without increasing flood risk. For the Columbia Basin, the overall improvements in reservoir operations are relatively modest, and (in isolation) might not motivate a restructuring of flood control operations. However, the technique is widely applicable to a wide range of water resources systems and/or different climate indices.  相似文献   

18.
Climate change projections for the Pacific Northwest (PNW) region of North America include warmer temperatures (T), reduced precipitation (P) in summer months, and increased P during all other seasons. Using a physically based hydrologic model and an ensemble of statistically downscaled global climate model scenarios produced by the Columbia Basin Climate Change Scenarios Project, we examine the nature of changing hydrologic extremes (floods and low flows) under natural conditions for about 300 river locations in the PNW. The combination of warming, and shifts in seasonal P regimes, results in increased flooding and more intense low flows for most of the basins in the PNW. Flood responses depend on average midwinter T and basin type. Mixed rain and snow basins, with average winter temperatures near freezing, typically show the largest increases in flood risk because of the combined effects of warming (increasing contributing basin area) and more winter P. Decreases in low flows are driven by loss of snowpack, drier summers, and increasing evapotranspiration in the simulations. Energy‐limited basins on the west side of the Cascades show the strongest declines in low flows, whereas more arid, water‐limited basins on the east side of the Cascades show smaller reductions in low flows. A fine‐scale analysis of hydrologic extremes over the Olympic Peninsula echoes the results for the larger rivers discussed above, but provides additional detail about topographic gradients.  相似文献   

19.
The South Saskatchewan River Basin is one of Canada's most threatened watersheds, with water supplies in most subbasins over‐allocated. In 2013, stakeholders representing irrigation districts, the environment, and municipalities collaborated with researchers and consultants to explore opportunities to improve the resiliency of the management of the Oldman and South Saskatchewan River subbasins. Streamflow scenarios for 2025‐2054 were constructed by the novel approach of regressing historical river flows against indices of large‐scale ocean‐atmosphere climate oscillations to derive statistical streamflow models, which were then run using projected climate indices from global climate models. The impacts of some of the most extreme scenarios were simulated using the hydrologic mass‐balance model Operational Analysis and Simulation of Integrated Systems (OASIS). Based on stakeholder observations, the project participants proposed and evaluated potential risk management and adaption strategies, e.g., modifying existing infrastructure, building new infrastructure, changing operations to supplement environmental flows, reducing demand, and sharing supply. The OASIS model was applied interactively at live modeling sessions with stakeholders to explore practical adaptation strategies. Our results, which serve as recommendations for policy makers, showed that forecast‐based rationing together with new expanded storage could dramatically reduce water shortages.  相似文献   

20.
ABSTRACT: A study of the influence of climate variability on streamflow in the southeastern United States is presented. Using a methodology previously applied to watersheds in Australia and the United States, a long range streamflow forecast (0 to 9 months in advance) is developed. Persistence (i.e., the previous season's streamflow) and climate predictors of the previous season are used to forecast the following season's (winter and spring) streamflow of the Suwannee River located in northern Florida. The winter and spring streamflow is historically the most likely to have severe flood events due to large scale cyclonic (frontal) storms. Results of the analysis indicated that a strong El Nino‐Southern Oscillation (ENSO) signal exists at various lead times to the winter and spring streamflow of the Suwannee River. These results are based on the high correlation values of two commonly used measurements of ENSO strength, the Multivariate ENSO Index (MEI) and Sea Surface Temperature Range 1. Using the relationships developed between climate and streamflow, a continuous exceedance probability forecast was developed for two Suwannee River stations. The forecast system provided an improved forecast for ENSO years. The ability to predict above normal (flood) or below normal (drought) years can provide communities the necessary lead time to protect life, property, sensitive wetlands, and endangered and threatened species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号