首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Soil contamination with persistent pesticides such as dichloro‐diphenyl‐trichloroethane (DDT) is a major issue at many brownfield sites. A technology that can be used to treat DDT‐contaminated soil using surfactants is to enhance the migration of the contaminants from the soil phase to the liquid phase, followed by the dechlorinating of the mobilized DDT in the liquid phase using zero‐valent iron (ZVI). The DDT degradation using ZVI occurs under anaerobic conditions via reductive reactions. The effect of the iron concentration on the dechlorination rate is assessed in the range of 1 to 40 percent (weight to volume) for remediation of a DDT‐contaminated site in Ontario, Canada. The optimum percentage of iron is found to be 20 percent at which the dechlorination rates of DDT and 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl)ethane (DDD) were 4.5 and 0.6 mg/L/day, respectively. While mixing of the reaction solution is shown to be important in providing the iron surface available for the dechlorination reaction throughout the reaction solution, there is no significant difference between batch and fed‐batch mode of adding iron to the dechlorination process. Low pH values (pH = 3) increased the dechlorination rates of DDT and DDD to 6.03 and 0.75 mg/L/day, respectively at a 20 percent iron concentration, indicating increased dechlorination rates in acidic conditions. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Field‐scale pilot tests were performed to evaluate enhanced reductive dechlorination (ERD) of dissolved chlorinated solvents at a former manufacturing facility located in western North Carolina (the site). Results of the site assessment indicated the presence of two separate chlorinated solvent–contaminated groundwater plumes, located in the northern and southern portions of the site. The key chlorinated solvents found at the site include 1,1,2,2‐tetrachloroethane, trichloroethene, and chloroform. A special form of EHC® manufactured by Adventus Americas was used as an electron donor at this site. In this case, EHC is a pH‐buffering electron donor containing controlled release carbon and ZV Iron MicroSphere 200, a micronscale zero‐valent iron (ZVI) manufactured by BASF. Approximately 3,000 pounds of EHC were injected in two Geoprobe® boreholes in the saprolite zone (southern plume), and 3,500 pounds of EHC were injected at two locations in the partially weathered rock (PWR) zone (northern plume) using hydraulic fracturing techniques. Strong reducing conditions were established immediately after the EHC injection in nearby monitoring wells likely due to the reducing effects of ZV Microsphere 200. After approximately 26 months, the key chlorinated VOCs were reduced over 98 percent in one PWR well. Similarly, the key chlorinated solvent concentrations in the saprolite monitoring wells decreased 86 to 99 percent after initial increases in concentrations of the parent chlorinated solvents. The total organic carbon and metabolic acid concentrations indicated that the electron donor lasted over 26 months after injection in the saprolite aquifer. © 2009 Wiley Periodicals, Inc.  相似文献   

3.
4.
Enhanced bioremediation is quickly developing into an economical and viable technology for the remediation of contaminated soils. Until recently, chlorinated organic compounds have proven difficult to bioremediate. Environmentally recalcitrant compounds, such as polychlorinated biphenyls (PCBs) and persistent organic pesticides (POPs) such as dichlorodiphenyl trichloroethane (DDT) have shown to be especially arduous to bioremediate. Recent advances in field‐scale bioremedial applications have indicated that biodegradation of these compounds may be possible. Engineers and scientists at the Savannah River Site (SRS), a major DOE installation near Aiken, South Carolina, are using enhanced bioremediation to remediate soils contaminated with pesticides (DDT and its metabolites, heptachlor epoxide, dieldrin, and endrin) and PCBs. This article reviews the ongoing remediation occurring at the Chemicals, Metals, and Pesticides (CMP) Pits using windrow turners to facilitate microbial degradation of certain pesticides and PCBs. © 2003 Wiley Periodicals, Inc.  相似文献   

5.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
A major challenge for in situ treatment is rebound. Rebound is the return of contaminant concentrations to near original levels following treatment, and frequently occurs because much of the residual nonaqueous phase liquid (NAPL) trapped within the soil capillaries or rock fractures remains unreachable by conventional in situ treatment. Fine‐textured strata have an especially strong capacity to absorb and retain contaminants. Through matrix diffusion, the contaminants dissolve back into groundwater and return with concentrations that can approach pretreatment levels. The residual NAPL then serves as a continuing source of contamination that may persist for decades or longer. A 0.73‐acre (0.3‐hectare) site in New York City housed a manufacturer of roofing materials for approximately 60 years. Coal tar served as waterproofing material in the manufacturing process and releases left behind residual NAPL in soils. An estimated 47,000 pounds (21,360 kg) of residual coal tar NAPL contaminated soils and groundwater. The soils contained strata composed of sands, silty sands, and silty clay. A single treatment using the RemMetrik® process and Pressure Pulse Technology® (PPT) targeted the contaminant mass and delivered alkaline‐activated sodium persulfate to the NAPL at the pore‐scale level via in situ treatment. Posttreatment soil sampling demonstrated contaminant mass reductions over 90 percent. Reductions in posttreatment median groundwater concentrations ranged from 49 percent for toluene to 92 percent for xylenes. Benzene decreased by 87 percent, ethylbenzene by 90 percent, naphthalene by 80 percent, and total BTEX by 91 percent. Mass flux analysis three years following treatment shows sustained reductions in BTEX and naphthalene, and no rebound. ©2015 Wiley Periodicals, Inc.  相似文献   

8.
Soil contaminated with persistent pesticides, such as DDT, poses a serious risk to humans and to wildlife. A surfactant‐aided soil‐washing technique was studied as an alternative method for remediation of DDT‐contaminated soil. An ex situ soil washing method was investigated using nonionic and anionic surfactants due to the clayey structure of the contaminated soil. A mixture of 1 percent nonionic surfactant (Brij 35) and 1 percent anionic surfactant (SDBS) removed more than 50 percent of DDT from soil in a flow‐through system, whereas individual surfactants or other combinations of the surfactants had a lower removal efficiency. The soil‐washing technique was improved using a mixing system. The mixture of surfactants was optimized in the mixing system, and the combination of 2 percent Brij 35 and 0.1 percent SDBS was found to be optimum, removing 70 to 80 percent of DDT. Prewashing of the soil with tap water decreased the adsorption of surfactants to soil particles by 30 to 40 percent, and postwashing recovered 90 percent of the surfactants. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Permeable reactive barriers made of zero‐valent iron (ZVI PRBs) have become a prominent remediation technology in addressing groundwater contamination by chlorinated solvents. Many ZVI PRBs have been installed across the United States, some as research projects, some at the pilot scale, and many at full scale. As a passive and in situ remediation technology, ZVI PRBs have many attractive features and advantages over other approaches to groundwater remediation. Ten ZVI PRBs installed in California were evaluated for their performance. Of those ten, three are discussed in greater detail to illustrate the complexities that arise when quantifying the performance of ZVI PRBs, and to provide comment on the national debate concerning the downgradient effects of source‐zone removal or treatment on plumes of contaminated groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
This article presents a case study of the source‐area treatment of tetrachloroethene (PCE) in a low‐permeability formation using zero‐valent iron (ZVI). Evidence of the stimulation of biological reduction processes within the treatment zone occurred. Pneumatic fracturing and injection of microscale ZVI slurry in the overburden and weathered bedrock zones was performed at a commercial brownfields redevelopment site in Maryland. A 20,000‐square‐foot source area impacted with PCE at concentrations greater than 15,000 µg/L was treated at depths ranging from 10 to 70 feet bgs. An average ZVI dosage of 0.0024 iron‐to‐soil mass ratio within the overburden zone led to a 75 percent decrease in PCE mass in less than one year. For the weathered bedrock zone, an average 0.0045 iron‐to‐soil mass ratio resulted in a 92 percent decrease in PCE mass during the same period. The reducing environment and hydrogen generated by the ZVI may have stimulated Dehalobacter populations, as evidenced by concentrations up to 104 cells per milliliter measured within the treatment area despite a groundwater pH as high as 9. The biological reductive dechlorination of the chlorinated ethenes explains the temporary increase in trichloroethene and cis‐1,2‐dichloroethene concentrations. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability of soil washing technology did not effectively evaluate the removal of the elevated contaminant concentrations that were found. To further evaluate the applicability of soil washing at this industrial site, a second more comprehensive pilot-scale treatability test was conducted. Twenty-three test runs were conducted over a two-week period in late September 1992, using a pilot-scale soil washing device called the volume reduction unit (VRU). The experimental design evaluated the effects of two wash temperatures, two pH levels, three surfactants, four surfactant concentrations, and two liquid-to-soil ratios on the contaminant removal efficiency of the soil washing process. Site soils from layers at three different depths were used in the study. Results from the pilot-scale treatability test indicated that the VRU could achieve contaminant reduction efficiencies of 97 percent for heptachlor and greater than 91 percent for dieldrin in the uppermost contaminated soils (surface to 1-ft. depth). Residual concentrations of heptachlor and dieldrin in the treated soil ranged from 50 ppm to less than 1.6 ppm, and 6.8 ppm to less than 1.6 ppm, respectively. However, the analytical method detection limit of 1.6 ppm was not low enough to provide residual concentration data at the risk-based action levels of 0.55 ppm for heptachlor and 0.15 ppm for dieldrin.  相似文献   

12.
Two pilot tests of an aerobic in situ bioreactor (ISBR) have been conducted at field sites contaminated with petroleum hydrocarbons. The two sites differed with respect to hydrocarbon concentrations. At one site, concentrations were low but persistent, and at the other site concentrations were high enough to be inhibitory to biodegradation. The ISBR unit is designed to enhance biodegradation of hydrocarbons by stimulating indigenous microorganisms. This approach builds on existing Bio‐Sep® bead technology, which provides a matrix that can be rapidly colonized by the active members of the microbial community and serves to concentrate indigenous degraders. Oxygen and nutrients are delivered to the bioreactor to maintain conditions favorable for growth and reproduction, and contaminated groundwater is treated as it is circulated through the bed of Bio‐Sep® beads. Groundwater moving through the system also transports degraders released from Bio‐Sep® beads away from the bioreactor, potentially increasing biodegradation rates throughout the aquifer. Groundwater sampling, Bio‐Traps, and molecular biological tools were used to assess ISBR performance during the two pilot tests. Groundwater monitoring indicated that contaminant concentrations decreased at both sites, and the microbial data suggested that these decreases were due to degradation by indigenous microorganisms rather than dilution or dispersion mechanisms. Taken together, these lines of evidence showed that the ISBR system effectively increased the number and activity of indigenous microbial degraders and enhanced bioremediation at the test sites. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Permeable reactive barriers (PRBs) have traditionally been constructed via trenching backfilled with granular, long‐lasting materials. Over the last decade, direct push injection PRBs with fine‐grained injectable reagents have gained popularity as a more cost‐efficient and less‐invasive approach compared to trenching. A direct push injection PRB was installed in 2005 to intercept a 2,500 feet (760 meter) long carbon tetrachloride (CT) groundwater plume at a site in Kansas. The PRB was constructed by injecting EHC® in situ chemical reduction reagent slurry into a line of direct push injection points. EHC is composed of slow‐release plant‐derived organic carbon plus microscale zero‐valent iron (ZVI) particles, specifically formulated for injection applications. This project was the first full‐scale application of EHC into a flow‐through reactive zone and provided valuable information about substrate longevity and PRB performance over time. Groundwater velocity at the site is high (1.8 feet per day) and sulfate‐rich (~120 milligrams per liter), potentially affecting the rate of substrate consumption and the PRB reactive life. CT removal rates peaked 16 months after PRB installation with >99% removal observed. Two years post‐installation removal rates decreased to approximately 95% and have since stabilized at that level for the 12 years of monitoring data available after injection. Geochemical data indicate that the organic carbon component of EHC was mostly consumed after 2 years; however, reducing conditions and a high degree of chloromethane treatment were maintained for several years after total organic carbon concentrations returned to background. Redox conditions are slowly reverting and have returned close to background conditions after 12 years, indicating that the PRB may be nearing the end of its reactive life. Direct measurements of iron have not been performed, but stoichiometric demand calculations suggest that the ZVI component of EHC may, in theory, last for up to 33 years. However, the ZVI component by itself would not be expected to support the level of treatment observed after the organic carbon substrate had been depleted. A longevity of up to 5 years was originally estimated for the EHC PRB based on the maximum expected longevity of the organic carbon substrate. While the organic carbon was consumed faster than expected, the PRB has continued to support a high degree of chloromethane treatment for a significantly longer time period of over 12 years. Recycling of biomass and the contribution from a reduced iron sulfide mineral zone are discussed as possible explanations for the sustained reducing conditions and continued chloromethane treatment.  相似文献   

14.
An optimized “Three‐Dimensional Compound Specific Isotope Analysis (3D‐CSIA)'' investigation was conducted at a chlorinated hydrocarbon–contaminated site in order to (1) determine if multiple onsite sources of groundwater contamination existed and (2) demonstrate the cost‐effectiveness of applying isotope fingerprinting at such a complex contaminated site. Previous groundwater investigations identified chlorinated hydrocarbons at levels that significantly exceed drinking‐water standards but failed to determine the source(s) of contamination due to the lack of vadose‐zone contamination and the absence of groundwater contaminants in shallow portions of the surficial aquifer. To better understand the contaminant source(s), groundwater samples were taken and tested for both the presence of chlorinated hydrocarbons and their isotopic signatures of 13C/12C, 37Cl/35Cl, and 2H/1H. A site investigation with an optimized 3D‐CSIA approach revealed multiple chlorinated hydrocarbon releases from different sources, which was also cost‐effective considering the new lines of evidence of target contaminants obtained with the 3D‐CSIA approach instead of any traditional fingerprinting approaches. In addition, the 3D‐CSIA results inferred in situ bioremediation of chlorinated hydrocarbons would be feasible at the site. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
A sulfuric acid leak in 1988 at a chloroethene‐contaminated groundwater site at the Naval Air Station Pensacola has resulted in a long‐term record of the behavior of chloroethene contaminants at low pH and a unique opportunity to assess the potential impact of source area treatment technologies, which involve acidification of the groundwater environment (e.g., Fenton's‐based in situ chemical oxidation), on downgradient natural attenuation processes. The greater than 75 percent decrease in trichloroethene (TCE) concentrations and the shift in contaminant composition toward predominantly reduced daughter products (dichloroethene [DCE] and vinyl chloride [VC]) that were observed along a 30‐m groundwater flow path characterized by highly acidic conditions (pH = 3.5 ± 0.4) demonstrated that chloroethene reductive dechlorination can continue to be efficient under persistent acidic conditions. The detection of Dehalococcoides‐type bacteria within the sulfuric acid/chloroethene co‐contaminant plume was consistent with biotic chloroethene reductive dechlorination. Microcosm studies conducted with 14C‐TCE and 14C‐VC confirmed biotic reductive dechlorination in sediment collected from within the sulfuric acid/chloroethene co‐contaminant plume. Microcosms prepared with sediment from two other locations within the acid plume, however, demonstrated only a limited mineralization to 14CO2 and 14CO, which was attributed to abiotic degradation because no significant differences were observed between experimental and autoclaved control treatments. These results indicated that biotic and abiotic mechanisms contributed to chloroethene attenuation in the acid plume at NAS Pensacola and that remediation techniques involving acidification of the groundwater environment (e.g., Fenton's‐based source area treatment) do not necessarily preclude efficient chloroethene degradation. © 2007 Wiley Periodicals, Inc.  相似文献   

16.
Bio‐Trap®–based in situ microcosm studies were conducted to evaluate EHC‐M® stimulated degradation of mono‐, di‐, and trichlorobenzenes in anaerobic groundwater at a site in Michigan. The data show that the EHC‐M® amendment stimulated an overall increase in microbial activity and a shift in the microbial community structure, indicating more reduced conditions. Stable isotope probing with 13C6‐chlorobenzene demonstrated attenuation of chlorobenzene and subsequent separation and characterization of the 12C‐ and 13C‐deoxyribonucleic acid (DNA) fractions were used to identify the attenuating microbes. These data clearly show the participation of an obligate aerobe in the chlorobenzene biodegradation process. Decreases in concentrations of trichlorobenzenes were also observed in comparison to a control. Due to the thermodynamically favorable reducing conditions stimulated by EHC‐M®, the mechanism of degradation of the trichlorobenzenes is presumed to be reductive dehalogenation. However, on the strength of the DNA‐based analysis of microbial community structure, concurrent microaerophilic degradation of chlorobenzene or its metabolites was definitively demonstrated and cannot be ruled out for the other chlorobenzenes. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
In situ chemical oxidation (ISCO) typically delivers oxidant solutions into the subsurface for contaminant destruction. Contaminants available to the oxidants, however, are limited by the mass transfer of hydrophobic contaminants into the aqueous phase. ISCO treatments therefore often leave sites with temporarily clean groundwater which is subject to contaminant rebound when sorbed and free phase contaminants leach back into the aqueous phase. Surfactant Enhanced In situ Chemical Oxidation (S‐ISCO®) uses a combined oxidant‐surfactant solution to provide optimized contaminant delivery to the oxidants for destruction via desorption and emulsification of the contaminants by the surfactants. This article provides an overview of S‐ISCO technology, followed by an implementation case study at a coal tar contaminated site in Queens, New York. Included are data points from the site which demonstrate how S‐ISCO delivers desorbed contaminants without uncontrolled contaminant mobilization, as desorbed and emulsified contaminants are immediately available to the simultaneously injected oxidant for reaction. ©2016 Wiley Periodicals, Inc.  相似文献   

20.
Methyl tertiary‐butyl ether (MTBE) is commonly used as a fuel additive because of its many favorable properties that allow it to improve fuel combustion and reduce resulting concentrations of carbon monoxide and unburnt hydrocarbons. Unfortunately, increased production and use have led to its introduction into the environment. Of particular concern is its introduction into drinking water supplies. Accordingly, research studies have been initiated to investigate the treatment of MTBE‐contaminated soil and groundwater. The summer 2000 issue of Remediation reported the results of an initial study conducted by the authors to evaluate the treatment of MTBE using Fenton's reagent. In this follow‐up study, experiments were conducted to further demonstrate the effectiveness of using Fenton's reagent (H2O2:Fe+2) to treat MTBE‐contaminated groundwater. The concentration of MTBE was reduced from an initial concentration of 1,300 μg/l (14.77 μ moles) to the regulatory level of 20 μg/l (0.23 μ moles) at a H2O2:Fe+2 molar ratio of 1:1, with ten minutes of contact time and an optimum pH of 5. The by‐products, acetone and tertiary butyl alcohol, which are always present in MTBE in trace amounts, were not removed even after 60 minutes of reaction time. © 2002 Wiley Periodicals, Inc. *  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号