首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.

The United Nations Climate Conference 25, held in December 2019, reached a significant agreement against implementing the Paris agreement come 2020. Bound by the contract, 189 countries who are party to the deal agreed to constrain worldwide temperature to ascend to 1.5° Celsius. To this end, the present study attempts to investigate the readiness of selected countries in the European Union to implement the agreement, which will better the quality of the global environment. In line with this, this study appraises the connection between economic growth, renewable and non-renewable energy consumption, on emissions in 11 countries in the European Union from 1990 to 2016. The study utilises the Pooled Mean Group-Auto Regressive Distributed Lag (PMG-ARDL) model estimator and Dumitrescu and Hurlin Panel Causality analysis to analyse the long-run and short-run impact and direction of causality among these factors, respectively. The long-run study's empirical results show a U-shaped Environmental Kuznets Curve (EKC) and a negative connection between renewable energy use and emissions in the EU-11 countries. In the short-run, non-renewable energy use worsens CO2 emissions while renewable energy use leads to a fall in emissions. Similarly, causality tests show a feedback mechanism between emissions and renewable energy use and between non-renewable energy and renewable use. Also, there is unidirectional causality from income to CO2 emissions, non-renewable energy use to CO2 emissions. The investigation recommends an expanded proportion of renewable energy sources in the EU countries’ energy mix to cut down on emissions.

  相似文献   

2.
The United Nations Framework Conventions on Climate Change (UNFCCC) asks their Parties to submit a National Inventory Report (NIR) for greenhouse gas (GHG) emissions on an annual basis. However, when many countries are quickly growing their economy, resulting in substantial GHG emissions, their inventory reporting systems either have not been established or been able to be linked to planning of mitigation measures at national administration levels. The present research was aimed to quantify the GHG emissions from an environmental sector in Taiwan and also to establish a linkage between the developed inventories and development of mitigation plans. The "environmental sector" consists of public service under jurisdiction of the Taiwan Environmental Protection Administration: landfilling, composting, waste transportation, wastewater treatment, night soil treatment, and solid waste incineration. The preliminary results were compared with that of the United States, Germany, Japan, United Kingdom, and Korea, considering the gaps in the scopes of the sectors. The GHG emissions from the Taiwanese environmental sector were mostly estimated by following the default methodology in the Intergovernmental Panel on Climate Change guideline, except that of night soil treatment and waste transportation that were modified or newly developed. The GHG emissions from the environmental sectors in 2004 were 10,225 kilotons of CO2 equivalent (kt CO2 Eq.). Landfilling (48.86%), solid waste incineration (27%), and wastewater treatment (21.5%) were the major contributors. Methane was the most significant GHG (70.6%), followed by carbon dioxide (27.8%) and nitrous oxide (1.6%). In summary, the GHG emissions estimated for the environmental sector in Taiwan provided reasonable preliminary results that were consistent and comparable with the existing authorized data. On the basis of the inventory results and the comparisons with the other countries, recommendations of mitigation plans were made, including wastewater and solid waste recycling, methane recovery for energy, and waste reduction/sorting.  相似文献   

3.
Islas J  Manzini F  Martínez M 《Ambio》2002,31(1):35-39
This study presents 4 scenarios relating to the environmental futures of electricity generation in Mexico up to the year 2025. The first scenario emphasizes the use of oil products, particularly fuel oil, and represents the historic path of Mexico's energy policy. The second scenario prioritizes the use of natural gas, reflecting the energy consumption pattern that arose in the mid-1990s as a result of reforms in the energy sector. In the third scenario, the high participation of renewable sources of energy is considered feasible from a technical and economic point of view. The fourth scenario takes into account the present- and medium-term use of natural-gas technologies that the energy reform has produced, but after 2007 a high and feasible participation of renewable sources of energy is considered. The 4 scenarios are evaluated up to the year 2025 in terms of greenhouse gases (GHG) and acid rain precursor gases (ARPG).  相似文献   

4.
Environmental and economic evaluation of bioenergy in Ontario, Canada   总被引:1,自引:0,他引:1  
We examined life cycle environmental and economic implications of two near-term scenarios for converting cellulosic biomass to energy, generating electricity from cofiring biomass in existing coal power plants, and producing ethanol from biomass in stand-alone facilities in Ontario, Canada. The study inventories near-term biomass supply in the province, quantifies environmental metrics associated with the use of agricultural residues for producing electricity and ethanol, determines the incremental costs of switching from fossil fuels to biomass, and compares the cost-effectiveness of greenhouse gas (GHG) and air pollutant emissions abatement achieved through the use of the bioenergy. Implementing a biomass cofiring rate of 10% in existing coal-fired power plants would reduce annual GHG emissions by 2.3 million metric tons (t) of CO2 equivalent (7% of the province's coal power plant emissions). The substitution of gasoline with ethanol/gasoline blends would reduce annual provincial lightduty vehicle fleet emissions between 1.3 and 2.5 million t of CO2 equivalent (3.5-7% of fleet emissions). If biomass sources other than agricultural residues were used, additional emissions reductions could be realized. At current crude oil prices ($70/barrel) and levels of technology development of the bioenergy alternatives, the biomass electricity cofiring scenario analyzed is more cost-effective for mitigating GHG emissions ($22/t of CO2 equivalent for a 10% cofiring rate) than the stand-alone ethanol production scenario ($92/t of CO2 equivalent). The economics of biomass cofiring benefits from existing capital, whereas the cellulosic ethanol scenario does not. Notwithstanding this result, there are several factors that increase the attractiveness of ethanol. These include uncertainty in crude oil prices, potential for marked improvements in cellulosic ethanol technology and economics, the province's commitment to 5% ethanol content in gasoline, the possibility of ethanol production benefiting from existing capital, and there being few alternatives for moderate-to-large-scale GHG emissions reductions in the transportation sector.  相似文献   

5.

This study investigates the impact of urbanization and nonrenewable energy consumption on carbon emissions. The context of the analysis is 54 African Union countries from 1996 to 2019. For estimation, we use panel quantile regression (PQR) and fully modified ordinary least squares (FMOLS). Our regression results demonstrate that there is a positive correlation between urbanization and CO2 emission. Further, our empirical results confirmed that nonrenewable energy consumption increases environmental pollution in African Union countries. The outcomes demonstrate the EKC hypothesis because at the initial stage of development, when economic growth increases, environmental pollution increases; after a threshold point, environmental pollution decreases as economic growth increases. It can find an inverted U-shaped relationship between economic growth and CO2 emission. The findings also show that urbanization should be planned; otherwise, it can lead to environmental degradation in the long run. Africa continent takes strict action and builds a blueprint for efficient and effective energy production and consumption. The only solution to achieve green growth in Africa is to shift from fossil fuel energy supply to renewable energy supply.

  相似文献   

6.
Technological advancements, environmental regulations, and emphasis on resource conservation and recovery have greatly reduced the environmental impacts of municipal solid waste (MSW) management, including emissions of greenhouse gases (GHGs). This study was conducted using a life-cycle methodology to track changes in GHG emissions during the past 25 years from the management of MSW in the United States. For the baseline year of 1974, MSW management consisted of limited recycling, combustion without energy recovery, and landfilling without gas collection or control. This was compared with data for 1980, 1990, and 1997, accounting for changes in MSW quantity, composition, management practices, and technology. Over time, the United States has moved toward increased recycling, composting, combustion (with energy recovery) and landfilling with gas recovery, control, and utilization. These changes were accounted for with historical data on MSW composition, quantities, management practices, and technological changes. Included in the analysis were the benefits of materials recycling and energy recovery to the extent that these displace virgin raw materials and fossil fuel electricity production, respectively. Carbon sinks associated with MSW management also were addressed. The results indicate that the MSW management actions taken by U.S. communities have significantly reduced potential GHG emissions despite an almost 2-fold increase in waste generation. GHG emissions from MSW management were estimated to be 36 million metric tons carbon equivalents (MMTCE) in 1974 and 8 MMTCE in 1997. If MSW were being managed today as it was in 1974, GHG emissions would be approximately 60 MMTCE.  相似文献   

7.
Owing to their relative underdevelopment, the 'cohesion' countries of the European Union have been allowed to increase emissions above the 1990 base within the EU 'envelope'. However, they face daunting challenges in meeting the agreed targets, because it requires breaking the link between rising gross domestic product and rising energy consumption at a relatively early stage in the economic development cycle. This paper examines the extreme case of Ireland, which is experiencing the most rapid growth in the EU. It shows that Ireland has already reached its emissions ceiling. The best opportunities for reducing emissions lie in energy supply, industry, and the household sector. A mix of policy instruments is required. Emissions trading seems to be the most effective policy instrument for reducing greenhouse gas emissions from energy supply and large industry. Such a policy would provide a stimulus for continuous improvement, without which Ireland's limit will be breached.  相似文献   

8.

Rising economic growth in recent ages is the primary concern of most of the countries to enhance the living standard, but the ever-increasing production of economic activities consumes a lot of energy, which leads to a sharp increase in carbon dioxide emissions. Innovation may be a remedy that can help improve energy efficiency, obtain renewable energy, and promote economic growth, thereby protecting the quality of the environment. Therefore, this paper examines the role of innovation and renewable energy consumption in CO2 reduction in OECD countries from 2004 to 2019. By using the two-step system generalized of moment estimator, the results show that economic growth and innovation significantly increase carbon emissions, however the innovation Claudia Curve (ICC) is verified, and the environmental Kuznets curve does not exist. Foreign direct investment has a negative impact on carbon emissions, thus verifying the Pollution Hao hypothesis, whereas renewable energy also improves environmental quality, but the interaction between innovation and renewable energy consumption still increases carbon emissions. Financial development, industrialization, trade, and energy consumption have also been found to be harmful factors of environmental quality. Our findings have considerable policy implications for OECD countries on the improvement of innovation indicators and investment in renewable energy sources to rise environmental quality.

  相似文献   

9.
Pig farms are a vital component of rural economies in Australia. However, disposal of effluent leads to many environmental problems. This case study of the Berrybank Farm piggery waste management system in Victoria estimates greenhouse gas (GHG) benefits from three different activities. Analysis reveals that the capturing and combusting of methane from piggery effluent could save between 4859 and 5840 tCO2e yr(-1) of GHG emissions. Similarly, using methane for replacing fuels for electricity generation could save another 800 tCO2e yr(-1)of GHGs. Likewise, by utilizing the biogas wastes to replace inorganic fertilizers there could be a further saving of 1193 to 1375 tCO2e yr(-1) of GHG, depending on the type of fertilizers the waste replaces. Therefore, a well-managed piggery farm with 15,000 pigs could save 6,852 to 8,015 tCO2e yr(-1), which equates to the carbon sequestrated from 6,800 to 8,000 spotted gum trees (age=35 year) in their above plus below-ground biomass. Implementation of similar project in suitable areas in Australia could have significant environmental and financial benefits.  相似文献   

10.

East Africa has enormous renewable energy potential, but only a small portion of it has been exploited, and little is known on its role in improving environmental quality. Thus, this study empirically examines the impact of renewable energy on the environment using ecological footprint (EF; positive indicator) and CO2 emissions (negative indicator) as proxy indicators for environmental quality in a panel of ten East African countries from 1990 to 2015. These indicators were chosen due to their potential impact in the environment. The work used the pooled mean group (PMG) as the main panel estimator to determine the impact while controlling non-renewable energy consumption, GDP per capita, and foreign direct investment (FDI). PMG has been used as it forces the long-run coefficients to be equal across all panel groups. The findings show that in the long run, there is a significant negative relationship between CO2 emissions and renewable energy consumption, as well as a significant positive relationship (with a low impact) between EF and renewable energy consumption, suggesting that renewable energy use enhances the area’s environmental quality. Also, results indicate that non-renewable energy use degrades environmental quality in both metrics, whereas GDP degrades environmental quality through CO2 emissions and improves environmental quality through EF. This requires East African countries to focus a higher emphasis on accessible renewable energy sources to achieve quick and sustainable economic growth and minimize environmental effects. To accomplish this, strategic policies and legislation, as well as the promotion of green technology, are required.

  相似文献   

11.
In order to achieve sustainable development in agriculture, it is necessary to quantify and compare the energy, economic, and environmental aspects of products. This paper studied the energy, economic, and greenhouse gas (GHG) emission patterns in broiler chicken farms in the Alborz province of Iran. We studied the effect of the broiler farm size as different production systems on the energy, economic, and environmental indices. Energy use efficiency (EUE) and benefit-cost ratio (BCR) were 0.16 and 1.11, respectively. Diesel fuel and feed contributed the most in total energy inputs, while feed and chicks were the most important inputs in economic analysis. GHG emission calculations showed that production of 1000 birds produces 19.13 t CO2-eq and feed had the highest share in total GHG emission. Total GHG emissions based on different functional units were 8.5 t CO2-eq per t of carcass and 6.83 kg CO2-eq per kg live weight. Results of farm size effect on EUE revealed that large farms had better energy management. For BCR, there was no significant difference between farms. Lower total GHG emissions were reported for large farms, caused by better management of inputs and fewer bird losses. Large farms with more investment had more efficient equipment, resulting in a decrease of the input consumption. In view of our study, it is recommended to support the small-scale broiler industry by providing subsidies to promote the use of high-efficiency equipment. To decrease the amount of energy usage and GHG emissions, replacing heaters (which use diesel fuel) with natural gas heaters can be considered. In addition to the above recommendations, the use of energy saving light bulbs may reduce broiler farm electricity consumption.  相似文献   

12.
An evaluation of the green energy potential generated from biogas and solar power, using agricultural manure waste and a photovoltaic (PV) system, was conducted in a large geographical area of a rural county with low population density and low pollution. The studied area, Shoufeng Township in Hualien County, is located in eastern Taiwan, where a large amount of manure waste is generated from pig farms that are scattered throughout the county. The objective of the study is to assess the possibility of establishing an integrated manure waste treatment plant by using the generated biogas incorporated with the PV system to produce renewable energy and then feed it back to the incorporated farms. A filed investigation, geographic information system (GIS) application, empirical equations development, and RETScreen modeling were conducted in the study. The results indicate that Shoufeng Township has the highest priority in setting up an integrated treatment and renewable energy plant by using GIS mapping within a 10-km radius of the transportation range. Two scenarios were plotted in assessing the renewable energy plant and the estimated electricity generation, plus the greenhouse gas (GHG) reduction was evaluated. Under the current governmental green energy scheme and from a long-term perspective, the assessment shows great potential in establishing the plant, especially in reducing environmental pollution problems, waste treatment, and developing suitable renewable energy.  相似文献   

13.

Introduction  

It is predicted that demand for electricity in Islamic Republic of Iran will continue to increase dramatically in the future due to the rapid pace of economic development leading to construction of new power plants. At the present time, most of electricity is generated by burning fossil fuels which result in emission of great deal of pollutants and greenhouse gases (GHG) such as SO2, NOx, and CO2. The power industry is the largest contributor to these emissions. Due to minimal emission of GHG by renewable and nuclear power plants, they are most suitable replacements for the fossil-fueled power plants. However, the nuclear power plants are more suitable than renewable power plants in providing baseload electricity. The Bushehr Nuclear Power Plant, the only nuclear power plant of Iran, is expected to start operation in 2010. This paper attempts to interpret the role of Bushehr nuclear power plant (BNPP) in CO2 emission trend of power plant sector in Iran.  相似文献   

14.
The 1999/31 Elemental Carbon Directive sets strict rules on the disposal of untreated municipal solid waste in the European Union countries and forces a reduction of the biodegradable quantities disposed off to landfills up to 35% of the amount produced in 1995 in the coming decade. More environmentally friendly waste management options shall be promoted under the framework of the Community Waste Strategy ([96] 399 Final). In this context, the production and thermal use of solid recovered fuels (SRFs), derived from nonhazardous bioresidues and mixed- and mono-waste streams, could be a key element in a future waste management system. Within the scope of the European Demonstration Project, RECOFUEL, SRF cocombustion was demonstrated in two large-scale lignite-fired coal boilers at RWE power station in Weisweiler, Germany. As a consequence of the high biogenic share of the cocombusted material, this approach can be considered beneficial following European Directive 2001/77/EC on electricity from renewable energy sources (directive). During the experimental campaign, the share of SRF in the overall thermal input was adjusted to approximately 2%, resulting into a feeding rate of approximately 25 t/hr. The measurement campaign included boiler measurements in different locations, fuel and ash sampling, and its characterization. The corrosion rates were monitored by dedicated corrosion probes. The overall results showed no significant influence of SRF cocombustion on boiler operation, emissions behavior, and residues quality for the thermal shares applied. Also, no effect of the increased chlorine concentration of the recovered fuel was observed in the flue gas path after the desulfurization unit.  相似文献   

15.
Pig farms are a vital component of rural economies in Australia. However, disposal of effluent leads to many environmental problems. This case study of the Berrybank Farm piggery waste management system in Victoria estimates greenhouse gas (GHG) benefits from three different activities. Analysis reveals that the capturing and combusting of methane from piggery effluent could save between 4859 and 5840 tCO2e yr? 1 of GHG emissions. Similarly, using methane for replacing fuels for electricity generation could save another 800 tCO2e yr? 1of GHGs. Likewise, by utilizing the biogas wastes to replace inorganic fertilizers there could be a further saving of 1193 to 1375 tCO2e yr? 1 of GHG, depending on the type of fertilizers the waste replaces. Therefore, a well-managed piggery farm with 15,000 pigs could save 6,852 to 8,015 tCO2e yr? 1, which equates to the carbon sequestrated from 6,800 to 8,000 spotted gum trees (age = 35 year) in their above plus below-ground biomass. Implementation of similar project in suitable areas in Australia could have significant environmental and financial benefits.  相似文献   

16.
Abstract

The 1999/31 Elemental Carbon Directive sets strict rules on the disposal of untreated municipal solid waste in the European Union countries and forces a reduction of the biodegradable quantities disposed off to landfills up to 35% of the amount produced in 1995 in the coming decade. More environmentally friendly waste management options shall be promoted under the framework of the Community Waste Strategy ([96] 399 Final). In this context, the production and thermal use of solid recovered fuels (SRFs), derived from nonhazardous bioresidues and mixed- and mono-waste streams, could be a key element in a future waste management system. Within the scope of the European Demonstration Project, RECO-FUEL, SRF cocombustion was demonstrated in two large-scale lignite-fired coal boilers at RWE power station in Weisweiler, Germany. As a consequence of the high biogenic share of the cocombusted material, this approach can be considered beneficial following European Directive 2001/77/EC on electricity from renewable energy sources (directive). During the experimental campaign, the share of SRF in the overall thermal input was adjusted to approximately 2%, resulting into a feeding rate of approximately 25 t/hr. The measurement campaign included boiler measurements in different locations, fuel and ash sampling, and its characterization. The corrosion rates were monitored by dedicated corrosion probes. The overall results showed no significant influence of SRF cocombustion on boiler operation, emissions behavior, and residues quality for the thermal shares applied. Also, no effect of the increased chlorine concentration of the recovered fuel was observed in the flue gas path after the desulfurization unit.  相似文献   

17.
This paper describes the study that led to the development of a carbon dioxide emissions matrix for the Oeiras municipality, one of the largest Portuguese municipalities, located in the metropolitan area of Lisbon. This matrix takes into account the greenhouse gas (GHG) emissions due to an increase of electricity demand in buildings as well as solid and liquid wastes treatment from the domestic and services sectors. Using emission factors that were calculated from the relationship between the electricity produced and amount of treated wastes, the GHC emissions in the Oeiras municipality were estimated for a time series of 6 yr (1998-2003). The obtained results showed that the electricity sector accounts for approximately 75% of the municipal emissions in 2003. This study was developed to obtain tools to base options and actions to be undertaken by local authorities such as energy planning and also public information.  相似文献   

18.
The objective of this work was the application of 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for the estimation of methane and nitrous oxide emissions from the waste sector in Argentina as a preliminary exercise for greenhouse gas (GHG) inventory development and to compare with previous inventories based on 1996 IPCC Guidelines. Emissions projections to 2030 were evaluated under two scenarios—business as usual (BAU), and mitigation—and the calculations were done by using the ad hoc developed IPCC software. According to local activity data, in the business-as-usual scenario, methane emissions from solid waste disposal will increase by 73% by 2030 with respect to the emissions of year 2000. In the mitigation scenario, based on the recorded trend of methane captured in landfills, a decrease of 50% from the BAU scenario should be achieved by 2030. In the BAU scenario, GHG emissions from domestic wastewater will increase 63% from 2000 to 2030. Methane emissions from industrial wastewater, calculated from activity data of dairy, swine, slaughterhouse, citric, sugar, and wine sectors, will increase by 58% from 2000 to 2030 while methane emissions from domestic will increase 74% in the same period. Results show that GHG emissions calculated from 2006 IPCC Guidelines resulted in lower levels than those reported in previous national inventories for solid waste disposal and domestic wastewater categories, while levels were 18% higher for industrial wastewater.

Implications: The implementation of the 2006 IPCC Guidelines for National Greenhouse Inventories is now considering by the UNFCCC for non-Annex I countries in order to enhance the compilation of inventories based on comparable good practice methods. This work constitutes the first GHG emissions estimation from the waste sector of Argentina applying the 2006 IPCC Guidelines and the ad doc developed software. It will contribute to identifying the main differences between the models applied in the estimation of methane emissions on the key categories of waste emission sources and to comparing results with previous inventories based on 1996 IPCC Guidelines.  相似文献   

19.
Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation.Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.  相似文献   

20.
In China, the continuously increasing amount of municipal solid waste (MSW) has resulted in an urgent need for changing the current municipal solid waste management (MSWM) system based on mixed collection. A pilot program focusing on source-separated MSW collection was thus launched (2010) in Hangzhou, China, to lessen the related environmental loads. And greenhouse gas (GHG) emissions (Kyoto Protocol) are singled out in particular. This paper uses life cycle assessment modeling to evaluate the potential environmental improvement with regard to GHG emissions. The pre-existing MSWM system is assessed as baseline, while the source separation scenario is compared internally. Results show that 23 % GHG emissions can be decreased by source-separated collection compared with the base scenario. In addition, the use of composting and anaerobic digestion (AD) is suggested for further optimizing the management of food waste. 260.79, 82.21, and ?86.21 thousand tonnes of GHG emissions are emitted from food waste landfill, composting, and AD, respectively, proving the emission reduction potential brought by advanced food waste treatment technologies. Realizing the fact, a modified MSWM system is proposed by taking AD as food waste substitution option, with additional 44 % GHG emissions saved than current source separation scenario. Moreover, a preliminary economic assessment is implemented. It is demonstrated that both source separation scenarios have a good cost reduction potential than mixed collection, with the proposed new system the most cost-effective one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号