首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Based on the method of material flow analysis (MFA), a static model of Austrian aluminum (Al) flows in 2010 was developed. Extensive data research on Al production, consumption, trade and waste management was conducted and resulted in a detailed model of national Al resources. Data uncertainty was considered in the model based on the application of a rigorous concept for data quality assessment. The model results indicated that the growth of the Austrian “in-use” Al stock amounts to 11 ± 3.1 kg yr−1 cap−1. The total “in-use” Al stock was determined using a bottom-up approach, which produced an estimate of 260 kg Al cap−1. Approximately 7 ± 1 kg of Al yr−1 cap−1 of old scrap was generated in 2010, of which 20% was not recovered because of losses in waste management processes. Quantitatively, approximately 40% of the total scrap input to secondary Al production originated from net imports, highlighting the import dependency of Austrian Al refiners and remelters. Uncertainties in the calculation of recycling indicators for the Austrian Al system with high shares of foreign scrap trade were exemplarily illustrated for the old scrap ratio (OSR) in secondary Al production, resulting in a possible range of OSRs between 0 and 66%. Overall, the detailed MFA in this study provides a basis to identify resource potentials as well as resource losses in the national Al system, and it will serve as a starting point for a dynamic Al model to be developed in the future.  相似文献   

2.
This paper presents results from a gate-to-gate analysis of the energy balance, greenhouse gas (GHG) emissions and economic efficiency of biochar production from palm oil empty fruit bunches (EFB). The analysis is based on data obtained from EFB combustion in a slow pyrolysis plant in Selangor, Malaysia. The outputs of the slow pyrolysis plant are biochar, syngas, bio-oil and water vapor. The net energy yield of the biochar produced in the Selangor plant is 11.47 MJ kg−1 EFB. The energy content of the biochar produced is higher than the energy required for producing the biochar, i.e. the energy balance of biochar production is positive. The combustion of EFB using diesel fuel has the largest energy demand of 2.31 MJ kg−1 EFB in the pyrolysis process. Comparatively smaller amounts of energy are required as electricity (0.39 MJ kg−1 EFB) and for transportation of biochar to the warehouse and the field (0.13 MJ kg−1 EFB). The net greenhouse gas emissions of the studied biochar production account for 0.046 kg CO2-equiv. kg−1 EFB yr−1 without considering fertilizer substitution effects and carbon accumulation from biochar in the soil. The studied biochar production is profitable where biochar can be sold for at least 533 US-$ t−1. Potential measures for improvement are discussed, including higher productivity of biochar production, reduced energy consumption and efficient use of the byproducts from the slow pyrolysis.  相似文献   

3.
The quality of recyclable and residual municipal solid waste (MSW) is, among other factors, strongly influenced by the seasonal variation in MSW composition. However, a relatively marginal amount of published data on seasonal MSW composition especially in East European countries do not provide sufficient information on this phenomenon. This study provides results from municipal waste composition research campaigns conducted during the period of 2009–2011 in four cities of Eastern European countries (Lithuania, Russia, Ukraine and Georgia). The median monthly MSW generation values ranged from 18.70 in Kutaisi (Georgia) to 38.31 kg capita−1 month−1 in Kaunas (Lithuania). The quantitative estimation of seasonal variation was performed by fitting the collected data to time series forecasting models, such as non-parametric seasonal exponential smoothing, Winters additive, and Winters multiplicative methods.  相似文献   

4.
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha?1 yr?1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3? leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha?1 yr?1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha?1 yr?1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha?1 yr?1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.  相似文献   

5.
The occurrence of butyltin (BT) compounds in more than 50 recent sediment samples of the Iberian Peninsula, collected in the harbours of the western Mediterranean Sea (Spain) and the North Atlantic Ocean (Portugal), including domestic and industrial sewage disposal sites, has been assessed. The highest levels of tributyltin (TBT) (7673 μg kg?1 dry wt.) were detected in commercial harbours associated with inputs from large vessels. However, relatively high TBT values (about 2150 μg kg?1 dry wt.) were also detected in fishing and recreational boating areas. Spanish marinas and harbours are more polluted in terms of TBT (5–7673 μg kg?1 dry wt.) compared to those in Portugal (4–12 μg kg?1 dry wt.). Generally, the Mediterranean sediments show a BT distribution characterized by the predominance of TBT over the degradation products dibutyl (DBT) and monobutyltin (MBT), indicating the presence of recent inputs, in contrast to the Portuguese coastal distribution. Calculation of butyltin degradation indexes (BDI) confirmed a different trend, depending on the area. Furthermore, a comparative study of the occurrence of BT in different sewage sludge disposal sites shows that domestic primary sewage sludge effluents can contribute to coastal BT pollution, but to a lesser extent when compared with harbours. Historical trends (1995–2003) for Barcelona harbour reveal that BT regulations on the use of TBT-based antifouling paints have not been fully effective. Finally, a comparison against the existing sediment quality guidelines (SQGs) indicated that acute toxic effects could only be expected for TBT in some Mediterranean harbours; conversely, in every North Atlantic Ocean station, a lesser environmental threat for the harbour benthic community is expected.  相似文献   

6.
The quantification of impacts in the abiotic resource category in life cycle assessment is still controversial. However, this is a pertinent issue because of the growing dependence of our industrial society on these resources, particularly on metal resources. One of the important shortcomings of the existing assessment methods used today is that characterization factors are not based on actual mining practice data. In this paper, a new characterization factor derived from recent (1998–2010) and representative (more than 50% coverage of global primary metal production) mining data was established for nine metals: copper, zinc, lead, nickel, molybdenum, gold, silver, platinum and palladium. The quantification of this new characterization factor is based on the annual increase in mass of ore required per unit mass of metal in the ore. This quantification relies on the concept that the mining of resources is threatened not by lack of ores but by changing ore characteristics, e.g., the percentage of metal in the ore, mineral type and location. The characterization factors determined in this study ranged from below 0.1 kg ore kg−1 y−1 for zinc to more than 15,000 kg ore kg−1 y−1 for gold. These results indicate that in 1999, 370,000 kg of ore was required per kg of gold in the ore, whereas in 2008, 530,000 kg of ore was required per kg of gold in the ore (an increase of approximately 4% per annum). When comparing these results with traditional life cycle impact assessment methods, it was found that in all but one method gold, palladium and platinum have the highest characterization factors among the nine metals. In all methods based on ore grade changes lead and zinc are the metals with the lowest characterization factors. However, an important difference in the proposed method is that it assigns higher relative values to precious metals. This suggests that the supply of precious metals may be under more pressure than indicated by other methods, which in the framework of the proposed method implies greater efforts in mining and mineral processing. There is still scope for improvement of the proposed method if more data become readily available.  相似文献   

7.
Mathematical tools are needed to screen out sites where Joule–Thomson cooling is a prohibitive factor for CO2 geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s?1 (0.1 MT yr?1) into moderately warm (>40 °C) and permeable formations (>10?14 m2 (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).  相似文献   

8.
Recently, the concept of pollution-safe cultivars (PSCs) was proposed to minimize the influx of pollutants to the human food chain. Variations in lead (Pb) uptake and translocation among Chinese cabbage (Brassica pekinensis L.) cultivars were investigated in a pot-culture experiment and a field-culture experiment to screen out Pb-PSCs for food safety. The results of the pot-culture experiment showed that shoot Pb concentrations under two Pb treatments (500 and 1500 mg kg?1) varied significantly (p < 0.05) between cultivars, with average values of 3.01 and 6.87 mg kg?1, respectively. Enrichment factors (EFs) and translocation factors (TFs) in cultivars were less than 0.50 and varied significantly (p < 0.05) between cultivars. Shoot Pb concentrations in 12 cultivars under treatment T1 (500 mg kg?1) were lower than 2.0 mg kg?1. The field-culture experiment further confirmed Qiuao, Shiboqiukang and Fuxing 80 as Pb-PSCs, which were suitable to be cultivated in low-Pb (<382.25 mg kg?1) contaminated soils and harmless to human health as foods.  相似文献   

9.
This investigation deals with the characterization carried out in zones around two pipeline pumping stations and one pipeline right-of-way in the north of Mexico. In particular those areas where contamination was evaluated: (a) south area of the separation ditch in the Avalos station, (b) the area between the separation ditch at the Avalos station, (c) km 194 + 420 of the Moctuzma station, and (d) km 286 + 900 in the Candelaria station. Results of this investigation showed that only four samples showed TPH values higher than the Mexican limit for 2004: AVA 1B, with 21,191 mg kg?1; AVA 1C, with 9348 mg kg?1; AVA 2B, with 13,970 mg kg?1; and MOC 2A, with 4108 mg kg?1.None of the sampled points showed the presence of PAHs at values higher than those found in the Mexican or American legislations. PAH were detected in the range of 0.0004 and 13.05 mg kg?1.It is suggested to implement surfactant soil washing as a remediation technique for the approximately 600 m3 that need to be treated.  相似文献   

10.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

11.
Use of anionic polyacrylamide (PAM) to control phosphorus (P) losses from a Chinese purple soil was studied in both a laboratory soil column experiment and a field plot experiment on a steep slope (27%). Treatments in the column study were a control, and PAM mixed uniformly into the soil at rates of 0.02, 0.05, 0.08, 0.10, and 0.20%. We found that PAM had an important inhibitory effect on vertical P transport in the soil columns, with the 0.20% PAM treatment having the greatest significant reduction in leachate soluble P concentrations and losses resulting from nine leaching periods. Field experiments were conducted on 5 m wide by 21 m long natural rainfall plots, that allowed collection of both surface runoff and subsurface drainage water. Wheat was planted and grown on all plots with typical fertilizer applied. Treatments included a control, dry PAM at 3.9 kg ha?1, dry PAM at 3.9 kg ha?1 applied together with lime (CaCO3 at 4.9 t ha?1), and dry PAM at 3.9 kg ha?1 applied together with gypsum (CaSO4·2H2O at 4 t ha?1). Results from the field plot experiment in which 5 rainfall events resulted in measurable runoff and leachate showed that all PAM treatments significantly reduced runoff volume and total P losses in surface runoff compared to the control. The PAM treatments also all significantly reduced water volume leached to the tile drain. However, total P losses in the leachate water were not significantly different due to the treatments, perhaps due to the low PAM soil surface application rate and/or high experimental variability. The PAM alone treatment resulted in the greatest wheat growth as indicated by the plant growth indexes of wheat plant height, leaf length, leaf width, grain number per head, and dried grain mass. Growth indexes of the PAM with Calcium treatments were significantly lesser. These results indicate that the selection and use of soil amendments need to be carefully determined based upon the most important management goal at a particular site (runoff/nutrient loss control, enhanced plant growth, or a combination).  相似文献   

12.
Substance flow analysis (SFA) of cadmium in Korea was carried out to analyze and predict cadmium flows, stocks, and future flows using both static and dynamic models. Cadmium is widely used in industry due to its strong corrosion and chemical resistance at high temperature, excellent electrical conduction, and low melting-point. Cadmium is produced as a by-product from the production processes for zinc and lead ingots. It is used for Ni–Cd batteries, polyvinylchloride (PVC) stabilizers, alloy products, pigments, and others.This examines the current cadmium flows and stocks using static SFA, and aims in predicting the future cadmium flows and stocks in Korea using dynamic SFA. From the static model, 2820 tonnes of cadmium ingots were produced, 0.04 tonnes imported and 2740 tons exported in Korea in 2009. In addition, 81 tonnes of cadmium were used in the manufacture of cadmium products: 80 tonnes for cadmium alloy products and 1 tonne for others. Finally, 175 tonnes of cadmium were imported into Korea for Ni–Cd batteries, 140 tonnes for PVC stabilizers, and 55 tonnes for pigments. Cadmium was used in various industries such as construction (221 tonnes), electrics and electronics (130 tonnes – including cadmium in imported products), transportation (30 tonnes) and others (30 tonnes). In 2009, 430 tonnes of industrial cadmium were discharged, with 10 tonnes being recycled and 420 tonnes discarded.From the dynamic model, cadmium stocks in Korea were estimated to be about 5120 tonnes in 2009. The industrial consumption in 2030 will be reduced to only 110 tonnes, only 27% of the current consumption of 410 tonnes in 2009, due to DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). One possible solution to the Cd oversupply problem is use in cadmium telluride photovoltaic (CdTe PV) systems which have low life cycle Cd emissions (0.02 g Cd/GWh) and high end-of-life semiconductor recycling yields (95%).  相似文献   

13.
This paper examines the 1-year anthropogenic stocks and flows of silver as it progresses from extraction to final disposal on the European continent. The primary flows of silver include production, fabrication and manufacturing, use, and waste management. A substance flow analysis (SFA) was used to trace the flows and inventory data, and mass balance equations were used to determine the quantity of flows. The results reveal that Europe has a low level of silver mine production (1580 Mg Ag/year) and instead relies on silver imports and the recycling of scrap in production and fabrication. In the year 1997, Europe imported 1160 Mg Ag of ore concentrate and 2010 Mg Ag of refined silver, and recycled 2750 Mg Ag of new and old scrap. There is a net addition of 3320 Mg Ag/year into silver reservoirs at the use stage. This is the result of a greater amount of silver entering the system from manufacturing than is leaving the system into waste management. The waste flow with the highest content of silver is municipal solid waste, which contains 1180 Mg Ag/year. In total, 62% of all discarded silver is recycled and 38% is sent to landfills. The results of this study and other element and material flow analyses can help guide resource managers, environmental policy makers, and environmental scientists in their efforts to increase material recovery and recycling, address resource sustainability, and ameliorate environmental problems.  相似文献   

14.
Nowadays, aluminum scrap is traded globally. This has increased the need to analyze the flows of aluminum scrap, as well as to determine the environmental consequences from aluminum recycling. The objective of this work is to determine the greenhouse gases (GHG) emissions of the old scrap collected and sorted for recycling, considering the market interactions. The study focused on Spain as a representative country for Europe. We integrate material flow analysis (MFA) with consequential life cycle assessment (CLCA) in order to determine the most likely destination for the old scrap and the most likely corresponding process affected. Based on this analysis, it is possible to project some scenarios and to quantify the GHG emissions (generated and avoided) associated with old scrap recycling within a global market. From the MFA results, we projected that the Spanish demand for aluminum products will be met mainly with an increase in primary aluminum imports, and the excess of old scrap not used in Spain will be exported in future years, mainly to Asia. Depending on the scenario and on the marginal source of primary aluminum considered, the GHG emission estimates varied between −18,140 kg of CO2 eq. t−1 and −8427 of CO2 eq. t−1 of old scrap collected. More GHG emissions are avoided with an increase in export flows, but the export of old scrap should be considered as the loss of a key resource, and in the long term, it will also affect the semifinished products industry. Mapping the flows of raw materials and waste, as well as quantifying the GHG impacts derived from recycling, has become an essential prerequisite to consistent development from a linear toward a circular economy (CE).  相似文献   

15.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

16.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

17.
Research on biofuel production pathways from algae continues because among other potential advantages they avoid key consequential effects of terrestrial oil crops, such as competition for cropland. However, the economics, energetic balance, and climate change emissions from algal biofuels pathways do not always show great potential, due in part to high fertilizer demand. Nutrient recycling from algal biomass residue is likely to be essential for reducing the environmental impacts and cost associated with algae-derived fuels. After a review of available technologies, anaerobic digestion (AD) and hydrothermal liquefaction (HTL) were selected and compared on their nutrient recycling and energy recovery potential for lipid-extracted algal biomass using the microalgae strain Scenedesmus dimorphus. For 1 kg (dry weight) of algae cultivated in an open raceway pond, 40.7 g N and 3.8 g P can be recycled through AD, while 26.0 g N and 6.8 g P can be recycled through HTL. In terms of energy production, 2.49 MJ heat and 2.61 MJ electricity are generated from AD biogas combustion to meet production system demands, while 3.30 MJ heat and 0.95 MJ electricity from HTL products are generated and used within the production system.Assuming recycled nutrient products from AD or HTL technologies displace demand for synthetic fertilizers, and energy products displace natural gas and electricity, the life cycle greenhouse gas reduction achieved by adding AD to the simulated algal oil production system is between 622 and 808 g carbon dioxide equivalent (CO2e)/kg biomass depending on substitution assumptions, while the life cycle GHG reduction achieved by HTL is between 513 and 535 g CO2e/kg biomass depending on substitution assumptions. Based on the effectiveness of nutrient recycling and energy recovery, as well as technology maturity, AD appears to perform better than HTL as a nutrient and energy recycling technology in algae oil production systems.  相似文献   

18.
Shanghai is the largest industrial and commercial city of China, where in-use stocks of metals are likely to be significant. The in-use stocks of copper in this city are thus established by an extensive “bottom-up” study. Spatial distribution of copper stocks within Shanghai has further been characterized for better understanding of copper utilization pattern of this city. For the year 2012, the results are a total stock of 914.6 Gg Cu, and 38.4–64.1 kg Cu per capita. Nearly 94% of copper stocks distribute in subcategories of electric power transmission and distribution, water transmission and distribution, buildings, and household durable. Features of spatial distribution show that three central districts of Jing An, Hong Kou and Huang Pu have the spatial density of more than 1 Gg/km2. And Chong Ming county and Jin Shan District have the lowest spatial density of about 0.01 Gg/km2. It has been found that the copper stock density within Shanghai is largely determined by population density and economic development level.  相似文献   

19.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

20.
Dynamic stocks and flows analysis was applied to the anthropogenic aluminum cycle in Italy in order to detect and quantify metal flows and in-use stocks over the years 1947–2009. The model utilized a top-down approach, including data for production, consumption, loss, and trade flows of aluminum. Seven end-use markets were considered, namely buildings and construction, transportation, consumer durables, machinery and equipment, electrical engineering, containers and packaging, and miscellaneous appliance types. The results of this dynamic stocks and flows analysis model quantified the contemporary anthropogenic reservoirs (or in-use stocks) of aluminum at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), implying significant potential for recycling in the future as this stock comes out of use. Flow analysis revealed that Italy imports mainly unwrought aluminum and exports final products, while the main material losses occur during alumina refining and collection of old scrap: specifically, containers and packaging have the highest old scrap generation rate, but for the lowest recovery rate (50%). Increasing support to collection of scrap and initiatives oriented to aluminum recovery specifically would allow Italy to increase its reliance on domestic material, and may also allow a decline of the country import-dependence on primary sources. The dynamic stocks and flows model created here provides a quantitative historical record of the aluminum required by Italian society during important periods of development and provides guidance for future decision-making around the use of domestic secondary resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号