首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Phosphorus (P) is a finite and non-substitutable resource that is essential to sustaining high levels of agricultural productivity but is also responsible for environmental problems, e.g., eutrophication. Based on the methodology of Material Flow Analysis, this study attempts to quantify all relevant flows and stocks of phosphorus (P) in Austria, with a special focus on waste and wastewater management. The system is modeled with the software STAN, which considers data uncertainty and applies data reconciliation and error propagation. The main novelty of this work lies in the high level of detail at which flows and stocks have been quantified to achieve a deeper understanding of the system and to provide a sound basis for the evaluation of various management options. The budget confirms on the one hand the dependence of mineral P fertilizer application (2 kg cap−1 yr−1), but it highlights on the other hand considerable unexploited potential for improvement. For example, municipal sewage sludge (0.75 kg cap−1 yr−1) and meat and bone meal (0.65 kg cap−1 yr−1) could potentially substitute 70% of the total applied mineral P fertilizers. However, recycling rates are low for several P flows (e.g., 27% of municipal sewage sludge; 3% of meat and bone meal). Therefore, Austria is building up a remarkable P stock (2.1 kg P cap−1 yr−1), mainly due to accumulation in landfills (1.1 kg P cap−1 yr−1) and agricultural soils (0.48 kg P cap−1 yr−1).  相似文献   

2.
Nowadays, aluminum scrap is traded globally. This has increased the need to analyze the flows of aluminum scrap, as well as to determine the environmental consequences from aluminum recycling. The objective of this work is to determine the greenhouse gases (GHG) emissions of the old scrap collected and sorted for recycling, considering the market interactions. The study focused on Spain as a representative country for Europe. We integrate material flow analysis (MFA) with consequential life cycle assessment (CLCA) in order to determine the most likely destination for the old scrap and the most likely corresponding process affected. Based on this analysis, it is possible to project some scenarios and to quantify the GHG emissions (generated and avoided) associated with old scrap recycling within a global market. From the MFA results, we projected that the Spanish demand for aluminum products will be met mainly with an increase in primary aluminum imports, and the excess of old scrap not used in Spain will be exported in future years, mainly to Asia. Depending on the scenario and on the marginal source of primary aluminum considered, the GHG emission estimates varied between −18,140 kg of CO2 eq. t−1 and −8427 of CO2 eq. t−1 of old scrap collected. More GHG emissions are avoided with an increase in export flows, but the export of old scrap should be considered as the loss of a key resource, and in the long term, it will also affect the semifinished products industry. Mapping the flows of raw materials and waste, as well as quantifying the GHG impacts derived from recycling, has become an essential prerequisite to consistent development from a linear toward a circular economy (CE).  相似文献   

3.
This paper presents results from a gate-to-gate analysis of the energy balance, greenhouse gas (GHG) emissions and economic efficiency of biochar production from palm oil empty fruit bunches (EFB). The analysis is based on data obtained from EFB combustion in a slow pyrolysis plant in Selangor, Malaysia. The outputs of the slow pyrolysis plant are biochar, syngas, bio-oil and water vapor. The net energy yield of the biochar produced in the Selangor plant is 11.47 MJ kg−1 EFB. The energy content of the biochar produced is higher than the energy required for producing the biochar, i.e. the energy balance of biochar production is positive. The combustion of EFB using diesel fuel has the largest energy demand of 2.31 MJ kg−1 EFB in the pyrolysis process. Comparatively smaller amounts of energy are required as electricity (0.39 MJ kg−1 EFB) and for transportation of biochar to the warehouse and the field (0.13 MJ kg−1 EFB). The net greenhouse gas emissions of the studied biochar production account for 0.046 kg CO2-equiv. kg−1 EFB yr−1 without considering fertilizer substitution effects and carbon accumulation from biochar in the soil. The studied biochar production is profitable where biochar can be sold for at least 533 US-$ t−1. Potential measures for improvement are discussed, including higher productivity of biochar production, reduced energy consumption and efficient use of the byproducts from the slow pyrolysis.  相似文献   

4.
Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km2) is estimated to be in excess of the N CL. Low CL values (3–8 kg N ha?1 yr?1) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3–15% of the forested and chaparral land areas are estimated to be in exceedance of the NO3? leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha?1 yr?1. In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha?1 yr?1, and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha?1 yr?1. Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities.  相似文献   

5.
Dynamic stocks and flows analysis was applied to the anthropogenic aluminum cycle in Italy in order to detect and quantify metal flows and in-use stocks over the years 1947–2009. The model utilized a top-down approach, including data for production, consumption, loss, and trade flows of aluminum. Seven end-use markets were considered, namely buildings and construction, transportation, consumer durables, machinery and equipment, electrical engineering, containers and packaging, and miscellaneous appliance types. The results of this dynamic stocks and flows analysis model quantified the contemporary anthropogenic reservoirs (or in-use stocks) of aluminum at about 320 kg per capita, mainly embedded within the transportation and building and construction sectors. Cumulative in-use stock represents approximately 11 years of supply at current usage rates (about 20 Mt versus 1.7 Mt/year), implying significant potential for recycling in the future as this stock comes out of use. Flow analysis revealed that Italy imports mainly unwrought aluminum and exports final products, while the main material losses occur during alumina refining and collection of old scrap: specifically, containers and packaging have the highest old scrap generation rate, but for the lowest recovery rate (50%). Increasing support to collection of scrap and initiatives oriented to aluminum recovery specifically would allow Italy to increase its reliance on domestic material, and may also allow a decline of the country import-dependence on primary sources. The dynamic stocks and flows model created here provides a quantitative historical record of the aluminum required by Italian society during important periods of development and provides guidance for future decision-making around the use of domestic secondary resources.  相似文献   

6.
This investigation deals with the characterization carried out in zones around two pipeline pumping stations and one pipeline right-of-way in the north of Mexico. In particular those areas where contamination was evaluated: (a) south area of the separation ditch in the Avalos station, (b) the area between the separation ditch at the Avalos station, (c) km 194 + 420 of the Moctuzma station, and (d) km 286 + 900 in the Candelaria station. Results of this investigation showed that only four samples showed TPH values higher than the Mexican limit for 2004: AVA 1B, with 21,191 mg kg?1; AVA 1C, with 9348 mg kg?1; AVA 2B, with 13,970 mg kg?1; and MOC 2A, with 4108 mg kg?1.None of the sampled points showed the presence of PAHs at values higher than those found in the Mexican or American legislations. PAH were detected in the range of 0.0004 and 13.05 mg kg?1.It is suggested to implement surfactant soil washing as a remediation technique for the approximately 600 m3 that need to be treated.  相似文献   

7.
Industrialization and urbanization in the developing world have boosted steel demand during the recent two decades. Reliable estimates on how much steel is required for high economic development are necessary to better understand the future challenges for employment, resource management, capacity planning, and climate change mitigation within the steel sector. During their use phase, steel-containing products provide service to people, and the size of the in-use stock of steel can serve as an indicator of the total service level. We apply dynamic material flow analysis to estimate in-use stocks of steel in about 200 countries and identify patterns of how stocks evolve over time. Three different models of the steel cycle are applied and a full uncertainty analysis is conducted to obtain reliable stock estimates for the period 1700–2008.Per capita in-use stocks in countries with a long industrial history, e.g., the U.S, the UK, or Germany, are between 11 and 16 tons, and stock accumulation is slowing down or has come to a halt. Stocks in countries that industrialized rather recently, such as South Korea or Portugal, are between 6 and 10 tons per capita and grow fast. In several countries, per capita in-use stocks of steel have saturated or are close to saturation. We identify the range of saturation to be 13 ± 2 tons for the total per capita stock, which includes 10 ± 2 tons for construction, 1.3 ± 0.5 tons for machinery, 1.5 ± 0.7 tons for transportation, and 0.6 ± 0.2 tons for appliances and containers. The time series for the stocks and the saturation levels can be used to estimate future steel production and scrap supply.  相似文献   

8.
Shanghai is the largest industrial and commercial city of China, where in-use stocks of metals are likely to be significant. The in-use stocks of copper in this city are thus established by an extensive “bottom-up” study. Spatial distribution of copper stocks within Shanghai has further been characterized for better understanding of copper utilization pattern of this city. For the year 2012, the results are a total stock of 914.6 Gg Cu, and 38.4–64.1 kg Cu per capita. Nearly 94% of copper stocks distribute in subcategories of electric power transmission and distribution, water transmission and distribution, buildings, and household durable. Features of spatial distribution show that three central districts of Jing An, Hong Kou and Huang Pu have the spatial density of more than 1 Gg/km2. And Chong Ming county and Jin Shan District have the lowest spatial density of about 0.01 Gg/km2. It has been found that the copper stock density within Shanghai is largely determined by population density and economic development level.  相似文献   

9.
Mathematical tools are needed to screen out sites where Joule–Thomson cooling is a prohibitive factor for CO2 geo-sequestration and to design approaches to mitigate the effect. In this paper, a simple analytical solution is developed by invoking steady-state flow and constant thermophysical properties. The analytical solution allows fast evaluation of spatiotemporal temperature fields, resulting from constant-rate CO2 injection. The applicability of the analytical solution is demonstrated by comparison with non-isothermal simulation results from the reservoir simulator TOUGH2. Analysis confirms that for an injection rate of 3 kg s?1 (0.1 MT yr?1) into moderately warm (>40 °C) and permeable formations (>10?14 m2 (10 mD)), JTC is unlikely to be a problem for initial reservoir pressures as low as 2 MPa (290 psi).  相似文献   

10.
While the demand for reduction in CO2 emission is increasing, the cost of the CO2 capture processes remains a limiting factor for large-scale application. Reducing the cost of the capture system by improving the process and the solvent used must have a priority in order to apply this technology in the future. In this paper, a definition of the economic baseline for post-combustion CO2 capture from 600 MWe bituminous coal-fired power plant is described. The baseline capture process is based on 30% (by weight) aqueous solution of monoethanolamine (MEA). A process model has been developed previously using the Aspen Plus simulation programme where the baseline CO2-removal has been chosen to be 90%. The results from the process modelling have provided the required input data to the economic modelling. Depending on the baseline technical and economical results, an economical parameter study for a CO2 capture process based on absorption/desorption with MEA solutions was performed.Major capture cost reductions can be realized by optimizing the lean solvent loading, the amine solvent concentration, as well as the stripper operating pressure. A minimum CO2 avoided cost of € 33 tonne−1 CO2 was found for a lean solvent loading of 0.3 mol CO2/mol MEA, using a 40 wt.% MEA solution and a stripper operating pressure of 210 kPa. At these conditions 3.0 GJ/tonne CO2 of thermal energy was used for the solvent regeneration. This translates to a € 22 MWh−1 increase in the cost of electricity, compared to € 31.4 MWh−1 for the power plant without capture.  相似文献   

11.
The quantification of impacts in the abiotic resource category in life cycle assessment is still controversial. However, this is a pertinent issue because of the growing dependence of our industrial society on these resources, particularly on metal resources. One of the important shortcomings of the existing assessment methods used today is that characterization factors are not based on actual mining practice data. In this paper, a new characterization factor derived from recent (1998–2010) and representative (more than 50% coverage of global primary metal production) mining data was established for nine metals: copper, zinc, lead, nickel, molybdenum, gold, silver, platinum and palladium. The quantification of this new characterization factor is based on the annual increase in mass of ore required per unit mass of metal in the ore. This quantification relies on the concept that the mining of resources is threatened not by lack of ores but by changing ore characteristics, e.g., the percentage of metal in the ore, mineral type and location. The characterization factors determined in this study ranged from below 0.1 kg ore kg−1 y−1 for zinc to more than 15,000 kg ore kg−1 y−1 for gold. These results indicate that in 1999, 370,000 kg of ore was required per kg of gold in the ore, whereas in 2008, 530,000 kg of ore was required per kg of gold in the ore (an increase of approximately 4% per annum). When comparing these results with traditional life cycle impact assessment methods, it was found that in all but one method gold, palladium and platinum have the highest characterization factors among the nine metals. In all methods based on ore grade changes lead and zinc are the metals with the lowest characterization factors. However, an important difference in the proposed method is that it assigns higher relative values to precious metals. This suggests that the supply of precious metals may be under more pressure than indicated by other methods, which in the framework of the proposed method implies greater efforts in mining and mineral processing. There is still scope for improvement of the proposed method if more data become readily available.  相似文献   

12.
In 2002, about 17.1 million bales of cotton were ginned in the United States and the estimated cotton gin waste was 2.25 × 109 kg. The disposal of cotton gin waste (CGW) is a significant problem in the cotton ginning industry, but CGW could be potentially used as feedstock for bioethanol. Freshly discharged CGW and stored CGW were characterized for storage stability and potential for ethanol production by determining their summative compositions. The bulk densities of the fresh wet and dry CGW were 210.2 ± 59.9 kg m−3 and 183.3 ± 52.2 kg m−3, respectively. After six months of storage the volume of piles A, B, and C decreased by 38.7%, 41.5%, and 33.3%, respectively, relative to the volume of the pile at the start of the storage. The ash content of the CGW was very high ranging from 10% to 21% and the acid-insoluble fraction was high (21–24%). The total carbohydrate content was very low and ranged from 34% to 49%. After three months storage, chemical compositional analysis showed the loss of total carbohydrates was minimal but after six months, the losses were as high as 25%. This loss of carbohydrates suggests that under open storage conditions, the feedstock must be processed within three months to reduce ethanol yield losses.  相似文献   

13.
This investigation represents the first environmental diagnosis of the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from a tropical mangrove in Fortaleza, northeastern Brazil. Sediment cores from six sampling stations in the Cocó and Ceará Rivers were retrieved in June-July 2006 to determine 17 priority PAHs. The total PAH concentrations (ΣPAHs) ranged from 3.04 to 2234.76 μg kg?1(Cocó River) and from 3.34 to 1859.21 μg kg?1 (Ceará River). These levels are higher than those of other cities with more industrial development. PAH concentrations did not reach probable effect levels (PELs). However, from 4.5 to 87.5% of individual PAH concentrations can occasionally cause adverse biological effects for aquatic organisms. The PAH molecular ratios indicate that the PAHs in the sediment core were derived mainly from petroleum, wood, and charcoal combustion (pyrogenic source), and that atmospheric deposition and urban runoff may serve as important pathways for PAH input to the sediment. Clearly, the ΣPAHs in sediments collected in the Cocó and Ceará Rivers indicate that ongoing pollution is more severe than past pollution.  相似文献   

14.
The quality of recyclable and residual municipal solid waste (MSW) is, among other factors, strongly influenced by the seasonal variation in MSW composition. However, a relatively marginal amount of published data on seasonal MSW composition especially in East European countries do not provide sufficient information on this phenomenon. This study provides results from municipal waste composition research campaigns conducted during the period of 2009–2011 in four cities of Eastern European countries (Lithuania, Russia, Ukraine and Georgia). The median monthly MSW generation values ranged from 18.70 in Kutaisi (Georgia) to 38.31 kg capita−1 month−1 in Kaunas (Lithuania). The quantitative estimation of seasonal variation was performed by fitting the collected data to time series forecasting models, such as non-parametric seasonal exponential smoothing, Winters additive, and Winters multiplicative methods.  相似文献   

15.
In this study the biosorption of Yellow RL, a metal-complex anionic dye, by dried Rhizopus arrhizus, a filamentous fungus, was investigated as a function of initial solution pH, initial dye concentration and initial salt (sodium chloride) concentration. The fungus exhibited the maximal dye uptake at pH 2 in the absence and in the presence of salt. Dye uptake increased with the dye concentration up to 1000 mg l?1 and diminished considerably in the presence of increasing concentrations of salt up to 50 g l?1. The fungus biosorbed 85.4 mg dye g?1of dried biomass at 100 mg l?1 initial dye concentration in the absence of salt. When 50 g l?1 salt was added to the biosorption medium, this value dropped to 60.8 mg g?1 resulting in 28.8% reduction in biosorption capacity. The Redlich–Peterson and Langmuir–Freundlich were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. The pseudo-second-order and saturation type kinetic models depicted the biosorption kinetics accurately for all cases studied. Equilibrium and kinetic constants varied with the level of salt were expressed as a function of salt concentration.  相似文献   

16.
Recently, the concept of pollution-safe cultivars (PSCs) was proposed to minimize the influx of pollutants to the human food chain. Variations in lead (Pb) uptake and translocation among Chinese cabbage (Brassica pekinensis L.) cultivars were investigated in a pot-culture experiment and a field-culture experiment to screen out Pb-PSCs for food safety. The results of the pot-culture experiment showed that shoot Pb concentrations under two Pb treatments (500 and 1500 mg kg?1) varied significantly (p < 0.05) between cultivars, with average values of 3.01 and 6.87 mg kg?1, respectively. Enrichment factors (EFs) and translocation factors (TFs) in cultivars were less than 0.50 and varied significantly (p < 0.05) between cultivars. Shoot Pb concentrations in 12 cultivars under treatment T1 (500 mg kg?1) were lower than 2.0 mg kg?1. The field-culture experiment further confirmed Qiuao, Shiboqiukang and Fuxing 80 as Pb-PSCs, which were suitable to be cultivated in low-Pb (<382.25 mg kg?1) contaminated soils and harmless to human health as foods.  相似文献   

17.
The formulation and scale-up of batch processes is one of the major challenges in the development of pharmaceutical dosage forms and at the same time a significant resource demanding process which is generally overlooked in environmental sustainability assessments. First, this paper proposes general trends in the experience curve of cumulative resource consumption of pharmaceutical tablet manufacturing of PREZISTA® 800 mg through wet granulation (WG) at four consecutive scales in both R&D and manufacturing environments (resp. WG1 = 1 kg/h, WG5 = 5 kg/h, WG30 = 30 kg/h and WG240 = 240 kg/h). Second, the authors aim at evaluating the environmental impact from a life cycle perspective of a daily consumption of PREZISTA® 2× 400 mg tablets versus the bioequivalent PREZISTA® 800 mg tablet which was launched to enhance patient compliance. Environmental sustainability assessment was conducted at three different system boundaries, which enables identification, localization and eventually reduction of burdens, in this case natural resource extraction. Exergy Analysis (EA) was used at process level (α) and plant level (β) while a cradle-to-gate Exergetic Life Cycle Assessment (ELCA) was conducted at the overall industrial level (γ) by means of the CEENE method (Cumulative Exergy Extraction from the Natural Environment). Life cycle stages taken into account are Active Pharmaceutical Ingredient (API) production, Drug Product (DP) production and Packaging. At process level (α), the total resource extraction for the manufacturing of one daily dose of PREZISTA® (800 mg tablet) amounted up to 0.44 MJex at the smallest scale (WG1) while this amount proved to be reduced by 58%, 79% and 83% at WG5, WG30 and WG240 respectively. Expanding the boundaries to the overall industrial level (γ) reveals that the main resource demand is at the production of the Active Pharmaceutical Ingredient (API), excipients, packaging materials and cleaning media used in DP production. At the largest scale (WG240) the use of cleaning media during DP production contributes considerably less to the total resource extraction. Overall, the effect of scale-up and learning on resource consumption during DP production showed to possess a power-law experience curve y = 2.40 * x−0.57 when shifting from WG1 (smallest lab scale) to WG240 (industrial manufacturing). Tablet dosage (2× 400 mg versus 1× 800 mg) did not significantly affect the absolute environmental burden. However, the relative contribution of resource categories did change due to the different production technology. It could be concluded that in meeting social and economic demands by launching the PREZISTA® 800 mg tablet, no trade-off in environmental burden occurred. On the long term, future research should strive to take into account R&D processes and all services related to pipeline activities taking place prior to market launch and eventually to allocate impacts to the final product.  相似文献   

18.
Treatment of a basic dye, methylene blue, by electrochemical oxidation, fly ash adsorption, and combined electrochemical oxidation-fly ash adsorption was compared. Methylene blue at 100 mg L?1 was used in this study. The toxicity was also monitored by the Vibrio fischeri light inhibition test.When electrochemical oxidation was used, 99% color and 84% COD were removed from the methylene blue solution in 20 min at a current density of 428 A m?2, NaCl of 1000 mg L?1, and pH0 of 7. However, the decolorized solution showed high toxicity (100% light inhibition).For fly ash adsorption, a high dose of fly ash (>20,000 mg L?1) was needed to remove methylene blue, and the Freundlich isotherm described the adsorption behavior well.In the combined electrochemical oxidation-fly ash adsorption treatment, the addition of 4000 mg L?1 fly ash effectively reduced intermediate toxicity and decreased the COD of the electrochemical oxidation-treated methylene blue solution. The results indicated that the combined process effectively removed color, COD, and intermediate toxicity of the methylene blue solution.  相似文献   

19.
Selenium plays an important role in emerging thin film solar energy technologies. As solar energy is expected to have a larger share in the world's future energy portfolio, the long-term availability of selenium becomes a potential concern, yet no global cycles have ever been generated. In this work, the global cycles, stocks, and flows of selenium are characterized for the entire time period 1940–2010 by using principles of material flow analysis (MFA). The cycles present information on the production, fabrication and manufacturing, use, and resource management stages during that period. The results of the analysis show that during 1940–2010 approximately 90 Gg of refined selenium was produced and entered into fabrication and manufacturing worldwide. 60 Gg of this amount (two-thirds!) was dissipated into the environment through end-uses such as chemicals, pigments, glass manufacturing, metallurgical additives, and fertilizer and feed additives. The in-use stock of selenium is estimated at 2.7 Gg as of 2010. Because of data limitations such as proprietary and withheld information, these figures represent informed estimates rather than exact values. Selenium can be recovered from end-of-life electrical and electronic equipment, while for other end-uses recycling is difficult or impossible. One of the ways to buttress supplies of selenium for future technologies would be to deploy recycling schemes for photovoltaics as well as other electronics applications.  相似文献   

20.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号